Chinese Journal of Rehabilitation Theory and Practice ›› 2024, Vol. 30 ›› Issue (9): 1082-1091.doi: 10.3969/j.issn.1006-9771.2024.09.012
Previous Articles Next Articles
LI Dong1,2, ZHANG Hao1,3,4,5(), LIU Nan2, WANG Xinyue2, XU Miao2
Received:
2024-07-29
Published:
2024-09-25
Online:
2024-10-15
Contact:
ZHANG Hao, E-mail: CLC Number:
LI Dong, ZHANG Hao, LIU Nan, WANG Xinyue, XU Miao. Effect of cognitive-motor dual-task training on balance function and gait in convalescent stroke patients: a randomized contolled trial[J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(9): 1082-1091.
Table 1
Comparison of baseline data between two groups"
组别 | n | 性别/n | 年龄/岁 | 卒中类型/n | 病程/d | 偏瘫侧/n | MMSE | Brunnstrom分期 | |||
---|---|---|---|---|---|---|---|---|---|---|---|
男 | 女 | 脑梗死 | 脑出血 | 左 | 右 | ||||||
对照组 | 34 | 19 | 15 | 74.76±7.98 | 30 | 4 | 108.53±19.86 | 29 | 5 | 28.09±1.58 | 3.79±0.73 |
试验组 | 34 | 23 | 11 | 72.09±8.48 | 32 | 2 | 111.29±25.51 | 32 | 2 | 28.24±1.30 | 3.85±0.74 |
χ2/t值 | 0.996 | 1.570 | 0.499 | 0.418 | 0.372 | ||||||
P值 | 0.318 | 0.221 | 0.673a | 0.620 | 0.427a | 0.677 | 0.743 |
Table 3
Comparison of balance test parameters in single task state between two groups pre- and post-training"
指标 | 组别 | n | 测试 | $\bar{x}±s$ | t值 | P值 | |
---|---|---|---|---|---|---|---|
运动椭圆面积/mm2 | 睁眼 | 对照组 | 34 | 前测 | 337.74±134.28 | 4.769 | < 0.001 |
后测 | 272.26±126.00 | ||||||
试验组 | 34 | 前测 | 344.65±126.80 | 5.258 | < 0.001 | ||
后测 | 273.94±95.47 | ||||||
治疗前两组均值差 | -6.91±184.69 | 0.218 | 0.828 | ||||
治疗后两组均值差 | -1.68±158.08 | 0.062 | 0.951 | ||||
闭眼 | 对照组 | 34 | 前测 | 625.53±224.93 | 9.445 | < 0.001 | |
后测 | 473.76±183.40 | ||||||
试验组 | 34 | 前测 | 630.26±199.08 | 4.344 | < 0.001 | ||
后测 | 509.29±171.42 | ||||||
治疗前两组均值差 | -4.73±300.38 | 0.092 | 0.927 | ||||
治疗后两组均值差 | -35.53±251.04 | 0.825 | 0.412 | ||||
运动轨迹长度/mm | 睁眼 | 对照组 | 34 | 前测 | 457.44±144.48 | 5.517 | < 0.001 |
后测 | 375.85±111.45 | ||||||
试验组 | 34 | 前测 | 486.21±167.36 | 5.773 | < 0.001 | ||
后测 | 389.41±122.01 | ||||||
治疗前两组均值差 | -28.77±221.10 | 0.759 | 0.451 | ||||
治疗后两组均值差 | -13.56±165.24 | 0.478 | 0.634 | ||||
闭眼 | 对照组 | 34 | 前测 | 800.59±242.02 | 8.905 | < 0.001 | |
后测 | 543.91±158.58 | ||||||
试验组 | 34 | 前测 | 760.62±205.12 | 2.934 | 0.006 | ||
后测 | 700.91±224.53 | ||||||
治疗前两组均值差 | 39.97±317.25 | -0.735 | 0.465 | ||||
治疗后两组均值差 | -157.00±274.87 | 3.330 | 0.001 | ||||
稳定极限/% | 对照组 | 34 | 前测 | 58.66±12.96 | -37.684 | < 0.001 | |
后测 | 64.32±11.17 | ||||||
试验组 | 34 | 前测 | 55.71±11.04 | -17.975 | < 0.001 | ||
后测 | 62.10±13.43 | ||||||
治疗前两组均值差 | 2.95±17.02 | -1.011 | 0.316 | ||||
治疗后两组均值差 | 2.22±17.46 | -0.741 | 0.461 |
Table 4
Comparison of balance test parameters in dual-task state pre- and post-training between two groups"
指标 | 组别 | n | 测试 | $\bar{x}±s$ | t值 | P值 | |
---|---|---|---|---|---|---|---|
运动椭圆面积/mm2 | 睁眼 | 对照组 | 34 | 前测 | 479.41±201.50 | 3.193 | 0.003 |
后测 | 429.88±139.40 | ||||||
试验组 | 34 | 前测 | 464.21±188.33 | 6.126 | < 0.001 | ||
后测 | 402.62±153.47 | ||||||
治疗前两组均值差 | 15.20±245.02 | -0.321 | 0.749 | ||||
治疗后两组均值差 | 27.26±207.33 | -0.767 | 0.446 | ||||
闭眼 | 对照组 | 34 | 前测 | 785.06±140.47 | 2.472 | 0.019 | |
后测 | 688.88±222.30 | ||||||
试验组 | 34 | 前测 | 876.29±284.16 | 8.491 | < 0.001 | ||
后测 | 637.76±183.80 | ||||||
治疗前两组均值差 | -91.23±316.98 | 1.152 | 0.253 | ||||
治疗后两组均值差 | 51.12±288.34 | -1.033 | 0.305 | ||||
运动轨迹长度/mm | 睁眼 | 对照组 | 34 | 前测 | 536.06±140.47 | 1.572 | 0.125 |
后测 | 520.12±149.56 | ||||||
试验组 | 34 | 前测 | 594.50±193.22 | 5.110 | < 0.001 | ||
后测 | 537.38±162.72 | ||||||
治疗前两组均值差 | -58.44±238.88 | 1.427 | 0.158 | ||||
治疗后两组均值差 | -17.26±221.01 | 0.455 | 0.650 | ||||
闭眼 | 对照组 | 34 | 前测 | 783.65±226.68 | 3.622 | < 0.001 | |
后测 | 698.32±187.84 | ||||||
试验组 | 34 | 前测 | 891.97±271.12 | 7.352 | < 0.001 | ||
后测 | 742.68±229.89 | ||||||
治疗前两组均值差 | -108.31±353.40 | 1.187 | 0.078 | ||||
治疗后两组均值差 | -44.36±296.87 | 0.871 | 0.387 | ||||
稳定极限/% | 对照组 | 34 | 前测 | 40.82±12.74 | -19.357 | < 0.001 | |
后测 | 53.14±12.26 | ||||||
试验组 | 34 | 前测 | 41.99±14.38 | -9.568 | < 0.001 | ||
后测 | 50.14±14.72 | ||||||
治疗前两组均值差 | -1.17±19.21 | 0.354 | 0.725 | ||||
治疗后两组均值差 | 3.00±19.16 | -0.913 | 0.365 |
Table 5
Comparison of parameters of single task gait analysis pre- and post-training between two groups"
指标 | 组别 | n | 测试 | $\bar{x}±s$ | t值 | P值 |
---|---|---|---|---|---|---|
步幅/cm | 对照组 | 34 | 前测 | 89.77±9.84 | -7.333 | < 0.001 |
后测 | 92.98±9.71 | |||||
试验组 | 34 | 前测 | 91.29±12.08 | -7.724 | < 0.001 | |
后测 | 95.91±11.35 | |||||
治疗前两组均值差 | -1.52±15.58 | 0.566 | 0.573 | |||
治疗后两组均值差 | -2.93±14.94 | 1.146 | 0.256 | |||
步行周期/s | 对照组 | 34 | 前测 | 1.30±0.10 | 6.823 | < 0.001 |
后测 | 1.23±0.09 | |||||
试验组 | 34 | 前测 | 1.34±0.16 | 8.772 | < 0.001 | |
后测 | 1.21±0.11 | |||||
治疗前两组均值差 | -0.04±0.19 | 1.295 | 0.200 | |||
治疗后两组均值差 | 0.02±0.14 | -1.166 | 0.248 | |||
步频/min-1 | 对照组 | 34 | 前测 | 77.37±6.35 | -7.187 | < 0.001 |
后测 | 81.39±6.08 | |||||
试验组 | 34 | 前测 | 75.36±7.92 | -10.225 | < 0.001 | |
后测 | 83.47±7.23 | |||||
治疗前两组均值差 | 2.01±10.15 | -1.155 | 0.252 | |||
治疗后两组均值差 | -2.08±9.45 | 1.283 | 0.204 | |||
步速/(m•s-1) | 对照组 | 34 | 前测 | 0.69±0.07 | -11.673 | < 0.001 |
后测 | 0.75±0.08 | |||||
试验组 | 34 | 前测 | 0.68±0.08 | -17.782 | < 0.001 | |
后测 | 0.79±0.06 | |||||
治疗前两组均值差 | 0.01±0.11 | -0.524 | 0.602 | |||
治疗后两组均值差 | -0.04±0.10 | 2.355 | 0.022 |
Table 6
Comparison of parameters of dual-task gait analysis pre- and post-training between two groups"
指标 | 组别 | n | 测试 | $\bar{x}±s$ | t值 | P值 |
---|---|---|---|---|---|---|
步幅/cm | 对照组 | 34 | 前测 | 85.31±9.59 | -2.238 | 0.032 |
后测 | 87.60±8.56 | |||||
试验组 | 34 | 前测 | 87.20±12.17 | -9.607 | < 0.001 | |
后测 | 93.31±10.61 | |||||
治疗前两组均值差 | -1.89±15.49 | 0.712 | 0.479 | |||
治疗后两组均值差 | -5.71±13.63 | 2.443 | 0.017 | |||
步行周期/s | 对照组 | 34 | 前测 | 1.26±0.10 | 2.442 | 0.020 |
后测 | 1.16±0.21 | |||||
试验组 | 34 | 前测 | 1.35±0.16 | 7.940 | < 0.001 | |
后测 | 1.24±0.12 | |||||
治疗前两组均值差 | -0.09±0.19 | 1.442 | 0.154 | |||
治疗后两组均值差 | -0.08±0.24 | -0.599 | 0.551 | |||
步频/min-1 | 对照组 | 34 | 前测 | 77.15±6.70 | -2.274 | 0.030 |
后测 | 79.75±6.39 | |||||
试验组 | 34 | 前测 | 74.80±8.38 | -9.825 | < 0.001 | |
后测 | 80.91±7.30 | |||||
治疗前两组均值差 | 2.35±10.73 | -1.275 | 0.207 | |||
治疗后两组均值差 | -1.16±9.70 | 0.700 | 0.486 | |||
步速/(m•s-1) | 对照组 | 34 | 前测 | 0.66±0.08 | -9.403 | < 0.001 |
后测 | 0.70±0.08 | |||||
试验组 | 34 | 前测 | 0.64±0.07 | -15.751 | < 0.001 | |
后测 | 0.75±0.07 | |||||
治疗前两组均值差 | 0.02±0.11 | -0.544 | 0.589 | |||
治疗后两组均值差 | -0.05±0.11 | 2.926 | 0.005 |
[1] |
OHZUNO T, USUDA S. Cognitive-motor interference in post-stroke individuals and healthy adults under different cognitive load and task prioritization conditions[J]. J Phys Ther Sci, 2019, 31(3): 255-260.
doi: 10.1589/jpts.31.255 pmid: 30936641 |
[2] |
STURNIEKS D L, MENANT J, VALENZUELA M, et al. Effect of cognitive-only and cognitive-motor training on preventing falls in community-dwelling older people: protocol for the smart±step randomised controlled trial[J]. BMJ Open, 2019, 9(8): e029409.
doi: 10.1136/bmjopen-2019-029409 |
[3] |
阚超杰, 郭川, 朱仕哲, 等. 老年人在认知-平衡双任务下的皮质激活特征[J]. 中国康复理论与实践, 2023, 29(10): 1189-1194.
doi: 10.3969/j.issn.1006-9771.2023.10.010 |
KAN C J, GUO C, ZHU S Z, et al. Characteristics of cortical activation in older adults under cognition-balance dual tasks[J]. Chin J Rehabil Theory Pract, 2023, 29(10): 1189-1194. | |
[4] | AN H S, KIM D J. Effects of activities of daily living-based dual-task training on upper extremity function, cognitive function, and quality of life in stroke patients[J]. Osong Public Health Res Perspect, 2021, 12(5): 304-313. |
[5] | 丰有燕, 权宏磊, 郑洁皎. 可变优先级认知-运动双任务训练对老年脑卒中患者平衡功能的影响[J]. 中国康复医学杂志, 2022, 37(6): 754-759. |
FENG Y Y, QUAN H L, ZHENG J J. Effect of variable priority cognitive-motor dual-task training on balance function in elderly stroke patients[J]. Chin J Rehabil Med, 2022, 37(6): 754-759. | |
[6] | 陈秀恩, 郑洁皎, 庄霁雯, 等. 范式和躯干控制双任务训练对老年脑卒中患者平衡功能的影响[J]. 中国康复医学杂志, 2020, 35(1): 45-49. |
CHEN X E, ZHENG J J, ZHUANG J W, et al. Effects of Stroop paradigm and trunk control dual task training on balance function in elderly stroke patients[J]. Chin J Rehabil Med, 2020, 35(1): 45-49. | |
[7] | SHU Y, BI M M, ZHOU T T, et al. Effect of dual-task training on gait and balance in stroke patients: an updated meta-analysis[J]. Am J Phys Med Rehabil, 2022, 101(12): 1148-1155. |
[8] | EMBRECHTS E, MCGUCKIAN T B, ROGERS J M, et al. Cognitive and motor therapy after stroke is not superior to motor and cognitive therapy alone to improve cognitive and motor outcomes: new insights from a meta-analysis[J]. Arch Phys Med Rehabil, 2023, 104(10): 1720-1734. |
[9] | CHIARAMONTE R, BONFIGLIO M, LEONFORTE P, et al. Proprioceptive and dual-task training: the key of stroke rehabilitation, a systematic review[J]. J Funct Morphol Kinesiol, 2022, 7(3): 53. |
[10] |
ZHOU Q, YANG H, ZHOU Q, et al. Effects of cognitive motor dual-task training on stroke patients: a RCT-based meta-analysis[J]. J Clin Neurosci, 2021, 92: 175-182.
doi: 10.1016/j.jocn.2021.08.009 pmid: 34509248 |
[11] |
EINSTAD M S, SALTVEDT I, LYDERSEN S, et al. Associations between post-stroke motor and cognitive function: a cross-sectional study[J]. BMC Geriatr, 2021, 21(1): 103.
doi: 10.1186/s12877-021-02055-7 pmid: 33546620 |
[12] | 中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国各类主要脑血管病诊断要点2019[J]. 中华神经科杂志, 2019, 52(9): 710-715. |
Chinese Society of Neurology, Chinese Stroke Society. Diagnostic criteria of cerebrovascular diseases in China (version 2019)[J]. Chin J Neurol, 2019, 52(9): 710-715. | |
[13] | 张卫, 恽晓平, 于一宁. 大脑中动脉供血区不同梗死灶所致认知障碍的特点[J]. 中国康复理论与实践, 2014, 20(7): 651-655. |
ZHANG W, YUN X P, YU Y N. Correlation of cognitive impairment and areas of middle cerebral artery territory infarction[J]. Chin J Rehabil Theory Pract, 2014, 20(7): 651-655. | |
[14] | AL-YAHYA E, DAWES H, SMITH L, et al. Cognitive motor interference while walking: a systematic review and meta-analysis[J]. Neurosci Biobehav Rev, 2011, 35(3): 715-728. |
[15] |
PERRY J, GARRETT M, GRONLEY J K, et al. Classification of walking handicap in the stroke population[J]. Stroke, 1995, 26(6): 982-989.
doi: 10.1161/01.str.26.6.982 pmid: 7762050 |
[16] | HUBER S K, KNOLS R H, ARNET P, et al. Motor-cognitive intervention concepts can improve gait in chronic stroke, but their effect on cognitive functions is unclear: a systematic review with meta-analyses[J]. Neurosci Biobehav Rev, 2022, 132: 818-837. |
[17] |
LEISMAN G, MOUSTAFA A A, SHAFIR T. Thinking, walking, talking: integratory motor and cognitive brain function[J]. Front Public Health, 2016, 4: 94.
doi: 10.3389/fpubh.2016.00094 pmid: 27252937 |
[18] |
ZANOTTO T, BERGAMIN M, ROMAN F, et al. Effect of exercise on dual-task and balance on elderly in multiple disease conditions[J]. Curr Aging Sci, 2014, 7(2): 115-136.
doi: 10.2174/1874609807666140328095544 pmid: 24679341 |
[19] | GOBBO S, BERGAMIN M, SIEVERDES J C, et al. Effects of exercise on dual-task ability and balance in older adults: a systematic review[J]. Arch Gerontol Geriatr, 2014, 58(2): 177-187. |
[20] |
CHOI J H, KIM B R, HAN E Y, et al. The effect of dual-task training on balance and cognition in patients with subacute post-stroke[J]. Ann Rehabil Med, 2015, 39(1): 81-90.
doi: 10.5535/arm.2015.39.1.81 pmid: 25750876 |
[21] |
GHAI S, GHAI I, EFFENBERG A O. Effects of dual tasks and dual-task training on postural stability: a systematic review and meta-analysis[J]. Clin Interv Aging, 2017, 12: 557-577.
doi: 10.2147/CIA.S125201 pmid: 28356727 |
[22] | 蔡庆, 谢丽君, 赵绿玉, 等. 基于反重力跑台训练系统的双重运动任务训练对脑卒中患者平衡功能的效果[J]. 中国康复理论与实践, 2018, 24(11): 1315-1319. |
CAI Q, XIE L J, ZHAO L Y, et al. Effects of dual-task motor training with anti-gravity treadmill on motor and balance after stroke[J]. Chin J Rehabil Theory Pract, 2018, 24(11): 1315-1319. | |
[23] |
TSANG C S L, MILLER T, PANG M Y C. Association between fall risk and assessments of single-task and dual-task walking among community-dwelling individuals with chronic stroke: a prospective cohort study[J]. Gait Posture, 2022, 93: 113-118.
doi: 10.1016/j.gaitpost.2022.01.019 pmid: 35134650 |
[24] |
CHOI J Y, YOO T, BURCAL C J, et al. Dual-task differences in individuals with chronic ankle instability: a systematic review with meta-analysis[J]. Gait Posture, 2023, 106: 28-33.
doi: 10.1016/j.gaitpost.2023.08.013 pmid: 37639962 |
[25] | URSIN M H, BERGLAND A, FURE B, et al. Gait and balance one year after stroke; relationships with lesion side, subtypes of cognitive impairment and neuroimaging findings: a longitudinal, cohort study[J]. Physiotherapy, 2019, 105(2): 254-261. |
[26] | VERSTRAETEN S, MARK R E, DIELEMAN J, et al. Motor impairment three months post stroke implies a corresponding cognitive deficit[J]. J Stroke Cerebrovasc Dis, 2020, 29(10): 105-119. |
[27] | LEE H C, HUANG C L, HO S H, et al. The effect of a virtual reality game intervention on balance for patients with stroke: a randomized controlled trial[J]. Games Health J, 2017, 6(5): 303-311. |
[28] |
PANG M Y C, YANG L, OUYANG H, et al. Dual-task exercise reduces cognitive-motor interference in walking and falls after stroke[J]. Stroke, 2018, 49(12): 2990-2998.
doi: 10.1161/STROKEAHA.118.022157 pmid: 30571419 |
[29] |
RAVI D K, GWERDER M, KÖNIG IGNASIAK N, et al. Revealing the optimal thresholds for movement performance: a systematic review and meta-analysis to benchmark pathological walking behaviour[J]. Neurosci Biobehav Rev, 2020, 108: 24-33.
doi: S0149-7634(19)30395-1 pmid: 31639377 |
[30] |
WONSETLER E C, BOWDEN M G. A systematic review of mechanisms of gait speed change post-stroke. Part 1: spatiotemporal parameters and asymmetry ratios[J]. Top Stroke Rehabil, 2017, 24(6): 435-446.
doi: 10.1080/10749357.2017.1285746 pmid: 28220715 |
[31] |
BOGEN B, MOE-NILSSEN R, RANHOFF A H, et al. The walk ratio: investigation of invariance across walking conditions and gender in community-dwelling older people[J]. Gait Posture, 2018, 61: 479-482.
doi: S0966-6362(18)30101-2 pmid: 29494821 |
[32] | CHISHOLM A E, MAKEPEACE S, INNESS E L, et al. Spatial-temporal gait variability poststroke: variations in measurement and implications for measuring change[J]. Arch Phys Med Rehabil, 2014, 95(7): 1335-1341. |
[33] |
FISSLER P, KÜSTER O, SCHLEE W, et al. Novelty interventions to enhance broad cognitive abilities and prevent dementia: synergistic approaches for the facilitation of positive plastic change[J]. Prog Brain Res, 2013, 207: 403-434.
doi: 10.1016/B978-0-444-63327-9.00017-5 pmid: 24309264 |
[34] |
王海静, 李庆雯. 双任务训练治疗脑卒中患者平衡障碍的研究进展[J]. 中国康复理论与实践, 2019, 25(9): 1026-1031.
doi: 10.3969/j.issn.1006-9771.2019.09.007 |
WANG H J, LI Q W. Advances in dual-task training for balance dysfunction after stroke (review)[J]. Chin J Rehabil Theory Pract, 2019, 25(9): 1026-1031. | |
[35] |
MAIER M, BALLESTER B R, VERSCHURE P F M J. Principles of neurorehabilitation after stroke based on motor learning and brain plasticity mechanisms[J]. Front Syst Neurosci, 2019, 13: 74.
doi: 10.3389/fnsys.2019.00074 pmid: 31920570 |
[36] |
BAMIDIS P D, VIVAS A B, STYLIADIS C, et al. A review of physical and cognitive interventions in aging[J]. Neurosci Biobehav Rev, 2014, 44: 206-220.
doi: 10.1016/j.neubiorev.2014.03.019 pmid: 24705268 |
[37] | PLUMMER P, ZUKOWSKI L A, FELD J A, et al. Cognitive-motor dual-task gait training within 3 years after stroke: a randomized controlled trial[J]. Physiother Theory Pract, 2022, 38(10): 1329-1344. |
[38] | KIM K J, KIM K H. Progressive treadmill cognitive dual-task gait training on the gait ability in patients with chronic stroke[J]. J Exerc Rehabil, 2018, 14(5): 821-828. |
[39] |
RAICHLEN D A, BHARADWAJ P K, NGUYEN L A, et al. Effects of simultaneous cognitive and aerobic exercise training on dual-task walking performance in healthy older adults: results from a pilot randomized controlled trial[J]. BMC Geriatr, 2020, 20(1): 83.
doi: 10.1186/s12877-020-1484-5 pmid: 32122325 |
[1] | ZHANG Lu, MA Jiangping, YANG Erli, CHEN Qiuhua, DONG Lijun, YIN Xiaobing. Application of cognitive-motor dual-task training in stroke: a bibliometrics analysis [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(9): 1034-1042. |
[2] | LUO Hong, XU Li. Effect of repetitive transcranial magnetic stimulation combined with repetitive peripheral magnetic stimulation on upper extremities motor function in patients with cerebral hemorrhage: a randomized controlled trial based on resting state-functional magenetic resonance imaging [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(9): 1060-1068. |
[3] | WANG Min, FANG Lantian, HUANG Chenyi. Effect of modified graded motor imagery on upper limb motor function for stroke patients: a randomized controlled trial [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(9): 1069-1073. |
[4] | XIE Dandan, CHEN Shanjia, LEI Lei, YU Guo, YU Jiahui, ZHAO Jiapei, HE Xiaokuo. Characteristics of brain activation during treadmill walking with visual feedback in healthy subjects and hemiplegic patients: a functional near infrared spectroscopy study [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(9): 1074-1081. |
[5] | ZHUANG Changhong, WANG Yufeng, HE Sijie, JIANG Tao, YE Jintao, ZHANG Tianfeng. Influence of functional ankle instability on balance and lower limb explosive power [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(9): 1107-1116. |
[6] | ZHOU Yiwen, ZHONG Yaping, WEI Mengli, WANG Haifeng, YU Shaohua, GUI Huixian. Risk assessment of return to sport based on gait data of athletes after anterior cruciate ligament reconstruction [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(8): 948-956. |
[7] | NIU Maolin, ZHAO Tan, LIU Xiaoli, GUO Feng. Effect of online and offline high definition transcranial direct current stimulation on finger motor skill learning in healthy adults: a randomized controlled trial [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(8): 957-964. |
[8] | YU Tingting, CAI Fuliang, MIAO Guihua, GU Chen, PENG Yuan. Effect of structured therapy and education based on personal strength on ischemic stroke: a randomized controlled trial [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(8): 965-971. |
[9] | LIANG Tianjia, LONG Yaobin, LU Liyan, ZHOU Jinying, HUANG Fucai, HUANG Linpeng, WU Yingchao, LONG Yaoxiang, WEI Xiaocui, LIU Zhong. Effect of rope-assisted proprioceptive neuromuscular facilitation combined with rope-assisted brain-computer interface training on upper limb function in stroke patients with hemiplegia: a randomized controlled trial [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(8): 972-978. |
[10] | WANG Zhe, WAN Qin, HUANG Zhaoming, WANG Yongli, QIAN Hong. Characteristics of speech prosody function in adults with non-fluent aphasia after stroke [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(8): 979-992. |
[11] | DUAN Linru, ZHENG Jiejiao, CHEN Xi, LI Yan. Analysis of relevant factors for fall risk in stroke patients [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(7): 811-817. |
[12] | LUO Wei, HE Yi, ZHANG Qingsu. Relationship between motor function of articulation organs and speech intelligibility in poststroke dysarthria [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(7): 818-822. |
[13] | HE Aiqun, LI Jingbo, HE Maoli, YE Simei, SONG Qiushuang, LIU Haiou, XIE Youshu. Effect of occupational skills relearning on hemiplegic arm function after stroke: a randomized controlled trial [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(7): 823-830. |
[14] | CHEN Chen, MENG Zhaoxiang, YANG Kang, ZHANG Minjie, ZUO Ya'nan, WANG Kui, ZHANG Xibin, QUAN Yifeng, JIN Xing. Effect of intelligent mirror glove task-oriented training combined with low-frequency repetitive transcranial magnetic stimulation on hand function in patients with stroke: a randomized controlled trial [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(7): 831-838. |
[15] | REN Xiaomin, WEI Hui, YUE Shouwei, YIN Sen. Risk factors of stroke in nine hospitals of six cities in Shandong, China: a case-control study [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(7): 839-847. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|