Chinese Journal of Rehabilitation Theory and Practice ›› 2024, Vol. 30 ›› Issue (6): 648-656.doi: 10.3969/j.issn.1006-9771.2024.06.004
Previous Articles Next Articles
LÜ Meiling1, WANG Jie1, ZENG Weisi1, WEN Xiaoting1, CHU Xin2()
Received:
2024-04-30
Revised:
2024-05-08
Published:
2024-06-25
Online:
2024-07-03
Supported by:
CLC Number:
LÜ Meiling, WANG Jie, ZENG Weisi, WEN Xiaoting, CHU Xin. Effect of virtual reality on cognitive function and quality of life in patients with Parkinson's disease: a meta-analysis[J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(6): 648-656.
Table 1
PICO framework for VR technology intervention on cognitive function and quality of life in patients with Parkinson's disease"
人群(Population) | 干预(Intervention) | 比较(Comparison) | 结局(Outcome) |
---|---|---|---|
帕金森病患者 | 干预场所 医院 社区 康复服务中心 干预措施 VR平衡训练或VR认知训练 常规平衡训练或常规认知训练或物理治疗 干预人员 康复治疗师 干预疗程 | VR干预组与对照组比较 | 身体功能(MoCA、TMT、抑郁评分) b140 注意力功能 b164 高水平认知功能 b152情感功能 b199精神功能 活动和参与(UPDRS-Part II、PDQ-39) d230进行日常事务 d510盥洗自身 d540穿衣 d710基本人际交往 |
Table 2
Characteristics of included literatures"
纳入文献 | 国家 | n(T/C) | 平均年龄(T/C)/岁 | 干预措施 | 干预疗程 | 结局指标 |
---|---|---|---|---|---|---|
Carpinella等[ | 意大利 | 17/20 | (73.00±7.10)/(75.60±8.20) | T:完全沉浸式VR干预:基于Gamepad穿戴设备进行平衡训练 C:物理治疗 | 每次45 min,每周3次,共7周 | ⑤ |
Van Den Heuvel等[ | 荷兰 | 16/12 | (66.30±6.39)/(68.80±9.68) | T:半沉浸式VR干预:基于增强视觉反馈的平衡训练 C:常规平衡训练 | 每次60 min,每周2次,共5周 | ③⑤ |
Maggio等[ | 意大利 | 10/10 | (69.90±6.30)/(68.90±10.05) | T:半沉浸式VR干预:基于BTS Nirvana系统的认知训练 C:常规认知训练 | 每次60 min,每周3次,共8周 | ③ |
Santos等[ | 巴西 | 13/14 | (61.70±7.30)/(64.50±9.80) | T:非沉浸式VR干预:基于Wii系统的平衡训练 C:常规平衡训练 | 每次50 min,每周2次,共8周 | ⑤ |
Allen等[ | 澳大利亚 | 18/19 | (67.50±7.30)/(68.40±8.50) | T:非沉浸式VR干预:基于平板电脑游戏训练上肢运动功能 C:常规运动训练上肢功能 | 每周3次,共12周 | ①②⑤ |
Lee等[ | 韩国 | 10/10 | (68.40±2.90)/(70.10±3.30) | T:非沉浸式VR干预:基于Wii系统的平衡训练 C:功能性电刺激 | 每次30 min,每周5次,共6周 | ③ |
Kashif 等[ | 巴基斯坦 | 22/22 | (63.86±4.57)/(62.32±4.61) | T:非沉浸式VR干预:基于Wii系统的平衡训练 C:常规物理治疗 | 每次40 min,每周3次,共12周 | ④ |
Maggio等[ | 意大利 | 12/10 | (59.70±9.70)/(66.80±6.50) | T:非沉浸式VR干预:基于VR应用程序的认知训练 C:常规认知训练 | 每次30 min,每周3次,共6周 | ①②③ |
Tollár等[ | 荷兰 | 25/25 | (70.00±4.69)/(70.60±4.10) | T:非沉浸式VR干预:基于X-box系统的平衡训练 C:动感单车平衡训练 | 每次60 min,每周5次,共5周 | ④⑤ |
Pompeu等[ | 巴西 | 16/16 | (60~85)/ (60~85) | T:非沉浸式VR干预:基于Wii系统的平衡和认知训练 C:常规平衡训练 | 每次60 min,每周2次,共7周 | ①④ |
Song等[ | 澳大利亚 | 28/25 | (68±7)/ (65±7) | T:非沉浸式VR干预:基于视频游戏的步态平衡训练 C:常规平衡训练 | 每次15 min,每周3次,共12周 | ①② |
Pedreira等[ | 巴西 | 16/16 | (61.10±8.20)/(66.20±8.50) | T:非沉浸式VR干预:基于Wii系统的平衡训练 C:常规平衡训练 | 每次40 min,每周3次,共4周 | ⑤ |
Hajebrahimi等[ | 土耳其 | 11/13 | (66.36±8.04)/(65.53±9.93) | T:非沉浸式VR干预:基于Wii系统的平衡训练 C:常规平衡训练 | 每次60 min,每周3次,共4周 | ①③⑤ |
Table 3
Results of meta-analysis"
结局指标 | 纳入研究数/n | 异质性检验 | 效应模型 | Meta分析结果 | |||||
---|---|---|---|---|---|---|---|---|---|
I2值/% | P值 | MD/SMD(95%CI) | P值 | ||||||
MoCA评分[ | 5 | 0 | 0.550 | 固定效应模型 | 1.11(0.31, 1.90) | 0.006 | |||
TMT-A评分[ | 3 | 0 | 0.440 | 固定效应模型 | -6.25(-11.71, -0.78) | 0.030 | |||
TMT-B评分[ | 3 | 0 | 0.880 | 固定效应模型 | -6.01(-28.16, 16.14) | 0.590 | |||
抑郁评分[ | 5 | 22 | 0.280 | 固定效应模型 | -0.56(-0.95, -0.18) | 0.004 | |||
UPDRS-Part II评分[ | 3 | 81 | 0.005 | 随机效应模型 | -2.11(-4.97, 0.75) | 0.150 | |||
PDQ-39评分[ | 7 | 2 | 0.410 | 固定效应模型 | -0.92(-4.03, 2.19) | 0.560 |
Table 4
GRADE quality of evidence assessment of included studies"
结局指标 | 研究数量/n | 样本量/n | 偏倚风险 | 不一致性 | 间接性 | 不精确性 | 发表偏倚 | 证据等级 |
---|---|---|---|---|---|---|---|---|
MoCA评分[ | 5 | 168 | 0 | 降一级a | 0 | 降一级b | 0 | 低 |
TMT-A评分[ | 3 | 112 | 0 | 0 | 0 | 降一级b | 0 | 中等 |
TMT-B评分[ | 3 | 112 | 0 | 0 | 0 | 降一级b | 0 | 中等 |
抑郁评分[ | 5 | 114 | 0 | 0 | 0 | 降一级b | 0 | 中等 |
UPDRS-Part II评分[ | 3 | 126 | 0 | 降一级a | 0 | 降一级b | 0 | 低 |
PDQ-39评分[ | 7 | 235 | 0 | 降一级a | 0 | 降一级b | 0 | 低 |
[1] |
ARMSTRONG M J, OKUN M S. Diagnosis and treatment of Parkinson disease: a review[J]. JAMA, 2020, 323(6): 548-560.
doi: 10.1001/jama.2019.22360 pmid: 32044947 |
[2] | LEWITT P A, CHAUDHURI K R. Unmet needs in Parkinson disease: motor and non-motor[J]. Parkinsonism Relat Disord, 2020, 80: S7-S12. |
[3] |
KEHAGIA A A, BARKER R A, ROBBINS T W. Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson's disease[J]. Lancet Neurol, 2010, 9(12): 1200-1213.
doi: S1474-4422(10)70212-X pmid: 20880750 |
[4] | VAN DE WEIJER S C F, DUITS A A, BLOEM B R, et al. Feasibility of a cognitive training game in Parkinson's disease: the randomized Parkin'Play study[J]. Eur Neurol, 2020, 83(4): 426-432. |
[5] | CHENG T C, HUANG S F, WU S Y, et al. Integration of virtual reality into transcranial magnetic stimulation improves cognitive function in patients with Parkinson's disease with cognitive impairment: a proof-of-concept study[J]. J Parkinsons Dis, 2022, 12(2): 723-736. |
[6] | VAN BALKOM T D, BERENDSE H W, VAN DER WERF Y D, et al. COGTIPS: a double-blind randomized active controlled trial protocol to study the effect of home-based, online cognitive training on cognition and brain networks in Parkinson's disease[J]. BMC Neurol, 2019, 19: 1-13. |
[7] | KERSHNER J R. Multisensory deficits in dyslexia may result from a locus coeruleus attentional network dysfunction[J]. Neuropsychologia, 2021, 161: 108023. |
[8] | DEHN L B, KATER L, PIEFKE M, et al. Training in a comprehensive everyday-like virtual reality environment compared to computerized cognitive training for patients with depression[J]. Comput Human Behav, 2018, 79: 40-52. |
[9] | YOON S Y. Update on Parkinson's disease rehabilitation[J]. Brain Neurorehabil. 2022, 15(2): e15. |
[10] |
TRUIJEN S, ABDULLAHI A, BIJSTERBOSCH D, et al. Effect of home-based virtual reality training and telerehabilitation on balance in individuals with Parkinson disease, multiple sclerosis, and stroke: a systematic review and meta-analysis[J]. Neurol Sci, 2022, 43(5): 2995-3006.
doi: 10.1007/s10072-021-05855-2 pmid: 35175439 |
[11] | NIETO-ESCAMEZ F, CORTÉS-PÉREZ I, OBRERO-GAITáN E, et al. Virtual reality applications in neurorehabilitation: current panorama and challenges[J]. Brain Sci, 2023, 13(5): 819. |
[12] | SCHUCH C P, BALBINOT G, BONILLA M N, et al. Feasibility of a short-term virtual reality balance intervention to improve mobility smoothness in Parkinson's disease[J]. Front Virtual Real, 2020. DOI:10.3389/frvir.2020.00007 |
[13] | PAGE M J, MOHER D, BOSSUYT P M, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews[J]. BMJ, 2021, 372: n160. |
[14] |
邱卓英, 李伦, 陈迪, 等. 基于世界卫生组织国际健康分类家族康复指南研究:理论架构和方法体系[J]. 中国康复理论与实践, 2020, 26(2): 125-135.
doi: 10.3969/j.issn.1006-9771.2020.02.001 |
QIU Z Y, LI L, CHEN D, et al. Research on rehabilitation guidelines using World Health Organization Family International Classifications: framework and approaches[J]. Chin J Rehabil Theory Pract, 2020, 26(2): 125-135. | |
[15] | HIGGINS J P, ALTMAN D G, GØTZSCHE P C, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials[J]. BMJ, 2011, 343: d5928. |
[16] | CARPINELLA I, CATTANEO D, BONORA G, et al. Wearable sensor-based biofeedback training for balance and gait in Parkinson disease: a pilot randomized controlled trial[J]. Arch Phys Med Rehabil, 2017, 98(4): 622-630. e3. |
[17] | VAN DEN HEUVEL M R C, KWAKKEL G, BEEK P J, et al. Effects of augmented visual feedback during balance training in Parkinson's disease: a pilot randomized clinical trial[J]. Parkinsonism Relat Disord, 2014, 20(12): 1352-1358. |
[18] | MAGGIO M G, DE COLA M C, LATELLA D, et al. What about the role of virtual reality in Parkinson disease's cognitive rehabilitation? Preliminary findings from a randomized clinical trial[J]. J Geriatr Psychiatry Neurol, 2018, 31(6): 312-318. |
[19] |
SANTOS P, MACHADO T, SANTOS L, et al. Efficacy of the Nintendo Wii combination with conventional exercises in the rehabilitation of individuals with Parkinson's disease: a randomized clinical trial[J]. NeuroRehabilitation, 2019, 45(2): 255-263.
doi: 10.3233/NRE-192771 pmid: 31498138 |
[20] | ALLEN N E, SONG J, PAUL S S, et al. An interactive videogame for arm and hand exercise in people with Parkinson's disease: a randomized controlled trial[J]. Parkinsonism Relat disord, 2017, 41: 66-72. |
[21] | LEE N Y, LEE D K, SONG H S. Effect of virtual reality dance exercise on the balance, activities of daily living, and depressive disorder status of Parkinson's disease patients[J]. J Phys Ther Sci, 2015, 27(1): 145-147. |
[22] | KASHIF M, AHMAD A, BANDPEI M A M, et al. Combined effects of virtual reality techniques and motor imagery on balance, motor function and activities of daily living in patients with Parkinson's disease: a randomized controlled trial[J]. BMC Geriatr, 2022, 22(1): 381. |
[23] | MAGGIO M G, LUCA A, CICERO C E, et al. Effectiveness of telerehabilitation plus virtual reality (Tele-RV) in cognitive e social functioning: a randomized clinical study on Parkinson's disease[J]. Parkinsonism Relat Disord, 2024, 119: 105970. |
[24] |
TOLLÁR J, NAGY F, HORTOBÁGYI T. Vastly different exercise programs similarly improve parkinsonian symptoms: a randomized clinical trial[J]. Gerontology, 2019, 65(2): 120-127.
doi: 10.1159/000493127 pmid: 30368495 |
[25] |
POMPEU J E, DOS SANTOS MENDES F A, DA SILVA K G, et al. Effect of Nintendo Wii™-based motor and cognitive training on activities of daily living in patients with Parkinson's disease: a randomised clinical trial[J]. Physiotherapy, 2012, 98(3): 196-204.
doi: 10.1016/j.physio.2012.06.004 pmid: 22898575 |
[26] |
SONG J, PAUL S S, CAETANO M J D, et al. Home-based step training using videogame technology in people with Parkinson's disease: a single-blinded randomised controlled trial[J]. Clin Rehabil, 2018, 32(3): 299-311.
doi: 10.1177/0269215517721593 pmid: 28745063 |
[27] | PEDREIRA G, PRAZERES A, CRUZ D, et al. Virtual games and quality of life in Parkinson's disease: a randomised controlled trial[J]. Advanc Parkinsons Dis, 2013, 2(4): 5. |
[28] | HAJEBRAHIMI F, VELIOGLU H A, BAYRAKTAROGLU Z, et al. Clinical evaluation and resting state fMRI analysis of virtual reality based training in Parkinson's disease through a randomized controlled trial[J]. Sci Rep, 2022, 12(1): 8024. |
[29] | 程筱雨, 毛成洁, 刘春风. 帕金森病非运动症状的临床处理[J]. 中国实用内科杂志, 2023, 43(10): 802-806. |
CHENG X Y, MAO C J, LIU C F. Clinical management of non-motor symptoms of Parkinson disease[J]. Chin J Pract Intern Med, 2023, 43(10): 802-806. | |
[30] | 刁永存, 王亭, 赵弘轶, 等. 行走连线测试与老年脑白质高信号患者认知和运动相关性的临床研究[J]. 中华老年心脑血管病杂志, 2021, 23(4): 352-355. |
DIAO Y C, WANG T, ZHAO H Y, et al. Relationship of working trail making test with cognition and motion in elderly white matter hyperintensities patients[J]. Chin J Geriatr Heart Brain Vessel Dis, 2021, 23(4): 352-355. | |
[31] | LIAO Y Y, TSENG H Y, LIN Y J, et al. Using virtual reality-based training to improve cognitive function, instrumental activities of daily living and neural efficiency in older adults with mild cognitive impairment[J]. Eur J Phys Rehabil Med, 2019, 56(1): 47-57. |
[32] |
TRIEGAARDT J, HAN T S, SADA C, et al. The role of virtual reality on outcomes in rehabilitation of Parkinson's disease: meta-analysis and systematic review in 1031 participants[J]. Neurol Sci, 2020, 41: 529-536.
doi: 10.1007/s10072-019-04144-3 pmid: 31808000 |
[33] | MAROTTA N, CALAFIORE D, CURCI C, et al. Integrating virtual reality and exergaming in cognitive rehabilitation of patients with Parkinson disease: a systematic review of randomized controlled trials[J]. Eur J Phys Rehabil Med, 2022, 58(6): 818. |
[34] |
MARINUS J, ZHU K D, MARRAS C, et al. Risk factors for non-motor symptoms in Parkinson's disease[J]. Lancet Neurol, 2018, 17(6): 559-568.
doi: S1474-4422(18)30127-3 pmid: 29699914 |
[35] |
陈思, 刘杰, 李顺, 等. 虚拟现实技术对帕金森病患者平衡功能的影响[J]. 中国康复理论与实践, 2017, 23(9): 1091-1095.
doi: 10.3969/j.issn.1006-9771.2017.09.021 |
CHEN S, LIU J, LI S, et al. Effects of virtual reality rehabilitation on balance for patients with Parkinson's disease[J]. Chin J Rehabil Theory Pract, 2017, 23(9): 1091-1095. | |
[36] | KOEPP M J, GUNN R N, LAWRENCE A D, et al. Evidence for striatal dopamine release during a video game[J]. Nature, 1998, 393(6682): 266-268. |
[37] | BOCK M A, BROWN E G, ZHANG L, TANNER C. Association of motor and nonmotor symptoms with health-related quality of life in a large online cohort of people with Parkinson disease[J]. Neurology, 2022, 98(22): e2194-e2203. |
[38] | NAVARRO-LOZANO F, KIPER P, CARMONA-PÉREZ C, et al. Effects of non-immersive virtual reality and video games on walking speed in Parkinson disease: a systematic review and meta-analysis[J]. J Clin Med, 2022, 11(22): 6610. |
[39] | LINA C, GUOEN C, HUIDAN W, et al. The effect of virtual reality on the ability to perform activities of daily living, balance during gait, and motor function in Parkinson disease patients: a systematic review and meta-analysis[J]. Am J Phys Med Rehabil, 2020, 99(10): 917-924. |
[40] | KIM E, HAN J, CHOI H, et al. Examining the academic trends in neuropsychological tests for executive functions using virtual reality: systematic literature review[J]. JMIR Serious Games, 2021, 9(4): e30249. |
[1] | WANG Hongzhi, YANG Jian. Application of virtual reality technology in physical activity and health of children and adolescents with cerebral palsy: a systematic review of systematic reviews [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(5): 505-512. |
[2] | LIANG Xiaoxiao, ZHENG Jiejiao, WU Xuejiao, CHEN Xi, ZHANG Tingyu, GU Qiuyi. Effect of virtual reality training on balance and walking in old patients with idiopathic normal pressure hydrocephalus [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(4): 424-430. |
[3] | CUI Tiantian, YANG Yulin, CUI Tengteng, MA Lihong. Effect of different intensive training on upper limb motor function in children with cerebral palsy: a network meta-analysis [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(4): 437-448. |
[4] | WEI Chen, WANG Zixian, LI Shufan, WANG Peng, JIA Shuqi, TIAN Ying. Effect of mirror therapy on upper extremity motor function and activities of daily living in stroke patients: a meta-analysis [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(3): 281-291. |
[5] | YU Chunyang, LIU Ran, ZHAO Yishuang, GUO Shuai, ZHOU Ya'nan, LI Li, ZHANG Hao. Effect of virtual reality treadmill training on balance and gait in stroke patients [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(3): 310-315. |
[6] | GE Ying, ZHAO Wowa, ZHANG Lu, SHU Xuan, LI Jiawei, LIU Ying. Motor function and quality of life in Parkinson's disease patients with freezing of gait [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(3): 339-344. |
[7] | WANG Mingchen, ZHANG Wenyu, ZHANG Xianzuo, ZANG Wanli. Effect of transcranial direct current stimulation on cognitive function and quality of life in patients with Parkinson's disease: a meta-analysis [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(2): 183-188. |
[8] | WANG Hangyu, GE Keke, FAN Yonghong, DU Lilu, ZOU Min, FENG Lei. Effect of active music therapy on cognitive function for older adults with cognitive impairment: a systematic review based on ICD-11 and ICF [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 36-43. |
[9] | LIN Na, GAO Hanlu, LU Huiping, CHEN Yanqing, ZHENG Junfan, CHEN Shurong. Effect of virtual reality on upper limb function after stroke: a study of diffusion tensor imaging [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 61-67. |
[10] | WANG He, HAN Liang, KAN Mengfan, YU Shaohong. Efficacy of electrical stimulation on shoulder-hand syndrome after stroke: a systematic review and meta-analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1048-1056. |
[11] | YU Ge, WANG Lu, CHEN Yaping. Effects of whole body vibration training on postural stability in chronic ankle instability: a meta-analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(4): 423-432. |
[12] | XU Minjie, WANG Bo, ZHOU Li, WANG Haifang, LEI Xiaojing, LI Ying, BAO Weiwei, MA Ya'nan, CHANG Jingling. Verbal and nonverbal cognitive function of aphasia after stroke based on Web of Science database: a visualized analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(4): 452-464. |
[13] | YANG Yanhui, WANG Haochong, DONG Yuanyuan, SHI Gaige, LI Qiuxia, ZHANG Jie, SHI Xiu'e. Effect of visual motion-induced brain computer interface technology on upper limb motor and cognitive function of patients with stroke [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(4): 472-478. |
[14] | WANG Zitong, MA Songcui, XU Lili, MA Rui, SUN Xu, CHENG Mei. Relationship among self-efficacy, quality of care and quality of life for people with physical disabilities [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(3): 340-348. |
[15] | ZHANG Liying, WANG Jiening, YU Xiaoming. Effect of robot-assisted training on upper limb motor in patients with stroke: a meta-analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(2): 156-166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|