Chinese Journal of Rehabilitation Theory and Practice ›› 2024, Vol. 30 ›› Issue (2): 168-175.doi: 10.3969/j.issn.1006-9771.2024.02.005
Previous Articles Next Articles
WU Jinlong1, REN Zhanbing2, YI Zizhen3, PENG Li1()
Received:
2023-12-18
Revised:
2024-01-15
Published:
2024-02-25
Online:
2024-03-01
Contact:
PENG Li
E-mail:plmzs@swu.edu.cn
Supported by:
CLC Number:
WU Jinlong, REN Zhanbing, YI Zizhen, PENG Li. Characteristics of interbrain synchrony during interactions among individuals with autism spectrum disorder: a scoping review[J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(2): 168-175.
Table 2
Characteristics of included literatures"
纳入文献 | 国家 | 试验组 | 诊断标准 | 对照组 | 互动 对象 | 位置 | 条件 | 任务 | 工具 (脑区) | 脑间相干分析 | 行为结果 | 脑成像结果 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Wang等[ (2020) | 中国 | 高功能ASD 5~12岁 n = 16 | DSM-V | 无 | 父母 | 并排 | 合作;单人 | 合作竞争任务 | fNIRS(前额叶) | 小波相干分析 | 相比于单人条件,合作条件下前额叶脑间同步性更高 | 病情越严重(孤独症谱系商和想象分量表),脑间同步性越低 |
Quiñones-Camacho等[ | 美国 | 高功能ASD 18~43岁 n = 26 | ADOS-2 | 健康成年人 n = 25 | 同一不熟悉的女性研究助理 | 面对面 | 未提及 | 口头交流 | fNIRS(前额叶和颞顶联合区) | 稳健相关分析 | ASD个体在互动过程中存在更大的社交障碍 | ASD参与者左右颞顶联合区脑间同步性更低 社交障碍和颞顶联合区脑间同步性降低,与刻板行为和限制性兴趣没有明显关联 |
Kruppa等[ | 德国 | 高功能ASD 8~18岁 n = 18 | ADOS-G | 健康儿童 n = 18 | 陌生人与父母性别相匹配(非同一个人) | 并排 | 父母和陌生人 | 合作竞争任务 | fNIRS(额叶) | 小波相干分析 | 在竞争和合作期间,ASD儿童同步性较差 | 对照组竞争任务时同步性更强,合作任务时局部一致性更强 与对照组相比,ASD儿童的前额叶同步性无显著性差异 |
Key等[ (2022) | 美国 | 高功能ASD 10~16岁 n = 34 | DSM-V | 无 | 配对的健康青少年 | 面对面 | 安静;社交 | 口头交流 | 脑电图 | 循环相关 | 社交行为无性别差异 | 与安静时相比,社交互动中,θ、α和β波同步性更高;较低的行为特征与较低的颞顶联合区同步性相关 社交互动中,仅ASD女童颞顶联合区同步提高 |
Tang等[ (2023) | 中国 | 高功能ASD (7.96±2.16)岁 n = 36 | DSM-V | 健康儿童 n = 35 | 父母 | 并排 | 延迟反应策略、即时反应策略、无具体策略 | 合作竞争任务 | fNIRS(额顶叶) | 小波相干分析 | 两组合作行为无显著性差异 | 两组任务期间脑间同步无显著性差异 延迟策略会产生更强的额顶皮质同步 |
[1] |
STELLA J, MUNDY P, TUCHMAN R. Social and nonsocial factors in the childhood autism rating scale[J]. J Autism Dev Disord, 1999, 29(4): 307-317.
pmid: 10478730 |
[2] |
ABRAHAMS B S, GESCHWIND D H. Advances in autism genetics: on the threshold of a new neurobiology[J]. Nat Rev Genet, 2008, 9(5): 341-355.
doi: 10.1038/nrg2346 pmid: 18414403 |
[3] |
KOUL A, AHMAR D, IANNETTI G D, et al. Interpersonal synchronization of spontaneously generated body movements[J]. iScience, 2023, 26(3): 106104.
doi: 10.1016/j.isci.2023.106104 |
[4] |
HAJNAL A, DURGIN F H. How frequent is the spontaneous occurrence of synchronized walking in daily life?[J]. Exp Brain Res, 2023, 241(2): 469-478.
doi: 10.1007/s00221-022-06536-y pmid: 36576509 |
[5] |
马昕玥, 崔丽莹. 人际同步对合作行为的促进机制及解释模型[J]. 心理科学进展, 2022, 30(6): 1317-1326.
doi: 10.3724/SP.J.1042.2022.01317 |
MA X Y, CUI L Y. Mechanisms and models of interpersonal synchrony in promoting cooperation[J]. Adv Psychol Sci, 2022, 30(6): 1317-1326.
doi: 10.3724/SP.J.1042.2022.01317 |
|
[6] |
张琳琳, 魏坤琳, 李晶. 儿童的人际运动同步[J]. 心理科学进展, 2022, 30(3): 623-634.
doi: 10.3724/SP.J.1042.2022.00623 |
ZHANG L L, WEI K L, LI J. Interpersonal motor synchronization in children[J]. Adv Psychol Sci, 2022, 30(3): 623-634.
doi: 10.3724/SP.J.1042.2022.00623 |
|
[7] | MARKOVA G, NGUYEN T, HOEHL S. Neurobehavioral interpersonal synchrony in early development: the role of interactional rhythms[J]. Fron Psychol, 2019, 10: 2078. |
[8] |
LU H, WANG X, ZHANG Y, et al. Increased interbrain synchronization and neural efficiency of the frontal cortex to enhance human coordinative behavior: a combined hyper-tES and fNIRS study[J]. NeuroImage, 2023, 282: 120385.
doi: 10.1016/j.neuroimage.2023.120385 |
[9] |
LIU T, SAITO H, OI M. Role of the right inferior frontal gyrus in turn-based cooperation and competition: a near-infrared spectroscopy study[J]. Brain Cogn, 2015, 99: 17-23.
doi: 10.1016/j.bandc.2015.07.001 |
[10] |
JIANG J, DAI B, PENG D, et al. Neural synchronization during face-to-face communication[J]. J Neurosci, 2012, 32(45): 16064-16069.
doi: 10.1523/JNEUROSCI.2926-12.2012 pmid: 23136442 |
[11] |
WANG Q D, HAN Z, HU X Y, et al. Autism symptoms modulate interpersonal neural synchronization in children with autism spectrum disorder in cooperative interactions[J]. Brain Topogr, 2020, 33(1): 112-122.
doi: 10.1007/s10548-019-00731-x pmid: 31560088 |
[12] |
QUIÑONES-CAMACHO L E, FISHBURN F A, BELARDI K, et al. Dysfunction in interpersonal neural synchronization as a mechanism for social impairment in autism spectrum disorder[J]. Autism Res, 2021, 14(8): 1585-1596.
doi: 10.1002/aur.v14.8 |
[13] |
HASEGAWA C, IKEDA T, YOSHIMURA Y, et al. Mu rhythm suppression reflects mother-child face-to-face interactions: a pilot study with simultaneous MEG recording[J]. Sci Rep, 2016, 6: 34977.
doi: 10.1038/srep34977 pmid: 27721481 |
[14] |
CIRELLI L K. How interpersonal synchrony facilitates early prosocial behavior[J]. Curr Opin Psychol, 2018, 20: 35-39.
doi: S2352-250X(17)30121-5 pmid: 28830004 |
[15] | 魏燕燕, 张天宏, 王继军. 社交互动影像超扫描技术及其在精神障碍研究中的应用[J]. 中国神经精神疾病杂志, 2022, 48(1): 60-64. |
WEI Y Y, ZHANG T H, WANG J J. Hyperscan of social interaction and its application in the study of mental disorders[J]. Chin J Nerv Ment Dis, 2022, 48(1): 60-64. | |
[16] |
CZESZUMSKI A, EUSTERGERLING S, LANG A, et al. Hyperscanning: a valid method to study neural inter-brain underpinnings of social interaction[J]. Front Hum Neurosci, 2020, 14: 39.
doi: 10.3389/fnhum.2020.00039 pmid: 32180710 |
[17] |
KOIKE T, TANABE H C, SADATO N. Hyperscanning neuroimaging technique to reveal the "two-in-one" system in social interactions[J]. Neurosci Res, 2015, 90: 25-32.
doi: 10.1016/j.neures.2014.11.006 pmid: 25499683 |
[18] |
KONVALINKA I, BAUER M, STAHLHUT C, et al. Frontal alpha oscillations distinguish leaders from followers: multivariate decoding of mutually interacting brains[J]. NeuroImage, 2014, 94: 79-88.
doi: S1053-8119(14)00144-X pmid: 24631790 |
[19] |
DE VICO FALLANI F, NICOSIA V, SINATRA R, et al. Defecting or not defecting: how to "read" human behavior during cooperative games by EEG measurements[J]. PLoS One, 2010, 5(12): e14187.
doi: 10.1371/journal.pone.0014187 |
[20] |
NOZAWA T, SASAKI Y, SAKAKI K, et al. Interpersonal frontopolar neural synchronization in group communication: an exploration toward fNIRS hyperscanning of natural interactions[J]. NeuroImage, 2016, 133: 484-497.
doi: S1053-8119(16)30003-9 pmid: 27039144 |
[21] | 周英凤, 顾莺, 胡雁, 等. JBI循证卫生保健中心对关于不同类型研究的质量评价工具:患病率及分析性横断面研究的质量评价[J]. 护士进修杂志, 2018, 33(3): 219-221. |
ZHOU Y F, GU Y, HU Y, et al. The Joanna Briggs Institute critical appraisal tools for use in systematic review: prevalence study and analytical cross sectional study[J]. J Nur Train, 2018, 33(3): 219-221. | |
[22] |
KRUPPA J A, REINDL V, GERLOFF C, et al. Brain and motor synchrony in children and adolescents with ASD: a fNIRS hyperscanning study[J]. Soc Cogn Affect Neurosci, 2021, 16(1/2): 103-116.
doi: 10.1093/scan/nsaa092 |
[23] |
KEY A P, YAN Y, METELKO M, et al. Greater social competence is associated with higher interpersonal neural synchrony in adolescents with autism[J]. Front Hum Neurosci, 2022, 15: 790085.
doi: 10.3389/fnhum.2021.790085 |
[24] |
TANG Y, WANG C B, LIU X, et al. Children with autism spectrum disorder perform comparably to their peers in a parent-child cooperation task[J]. Exp Brain Res, 2023, 241(7): 1905-1917.
doi: 10.1007/s00221-023-06626-5 |
[25] | IGELSTRÖM K M, WEBB T W, KELLY Y T, et al. Topographical organization of attentional, social, and memory processes in the human temporoparietal cortex[J]. eNeuro, 2016, 3(2): ENEURO.0060-16.2016. |
[26] |
KLEINHANS N M, RICHARDS T, STERLING L, et al. Abnormal functional connectivity in autism spectrum disorders during face processing[J]. Brain, 2008, 131: 1000-1012.
doi: 10.1093/brain/awm334 pmid: 18234695 |
[27] |
KAWASAKI M, KITAJO K, FUKAO K, et al. Frontal theta activation during motor synchronization in autism[J]. Sci Rep, 2017, 7(1): 15034.
doi: 10.1038/s41598-017-14508-4 pmid: 29118348 |
[28] |
LOTTER L D, KOHL S H, GERLOFF C, et al. Revealing the neurobiology underlying interpersonal neural synchronization with multimodal data fusion[J]. Neurosci Biobehav Rev, 2023, 146: 105042.
doi: 10.1016/j.neubiorev.2023.105042 |
[29] |
KRALL S C, ROTTSCHY C, OBERWELLAND E, et al. The role of the right temporoparietal junction in attention and social interaction as revealed by ALE meta-analysis[J]. Brain Struct Funct, 2015, 220(2): 587-604.
doi: 10.1007/s00429-014-0803-z pmid: 24915964 |
[30] |
BUZSÁKI G, MOSER E I. Memory, navigation and theta rhythm in the hippocampal-entorhinal system[J]. Nat Neurosci, 2013, 16(2): 130-138.
doi: 10.1038/nn.3304 pmid: 23354386 |
[31] | GIRAUD A L, POEPPEL D. Cortical oscillations and speech processing: emerging computational principles and operations[J]. Nat Neurosci, 2012, 15(4): 511-517. |
[32] |
JOKISCH D, JENSEN O. Modulation of gamma and alpha activity during a working memory task engaging the dorsal or ventral stream[J]. J Neurosci, 2007, 27(12): 3244-3251.
doi: 10.1523/JNEUROSCI.5399-06.2007 pmid: 17376984 |
[33] |
BOUDEWYN M A, CARTER C S. I must have missed that: alpha-band oscillations track attention to spoken language[J]. Neuropsychologia, 2018, 117: 148-155.
doi: S0028-3932(18)30223-9 pmid: 29842859 |
[34] | SPITZER B, HAEGENS S. Beyond the status quo: a role for beta oscillations in endogenous content (re)activation[J]. eNeuro, 2017, 4(4): ENEURO.0170-17. |
[35] |
GROSS J, SCHMITZ F, SCHNITZLER I, et al. Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans[J]. Proc Nat Acad Sci U S A, 2004, 101(35): 13050-13055.
doi: 10.1073/pnas.0404944101 |
[36] |
PÉREZ A, CARREIRAS M, DUÑABEITIA J A. Brain-to-brain entrainment: EEG interbrain synchronization while speaking and listening[J]. Sci Rep, 2017, 7(1): 4190.
doi: 10.1038/s41598-017-04464-4 pmid: 28646190 |
[37] |
PÉREZ A, DUMAS G, KARADAG M, et al. Differential brain-to-brain entrainment while speaking and listening in native and foreign languages[J]. Cortex, 2019, 111: 303-315.
doi: S0010-9452(18)30405-2 pmid: 30598230 |
[38] |
HU Y, PAN Y F, SHI X W, et al. Inter-brain synchrony and cooperation context in interactive decision making[J]. Biol Psychol, 2018, 133: 54-62.
doi: S0301-0511(17)30353-8 pmid: 29292232 |
[39] |
PALVA S, PALVA J M. New vistas for α-frequency band oscillations[J]. Trend Neurosci, 2007, 30(4): 150-158.
doi: 10.1016/j.tins.2007.02.001 |
[40] |
TOGNOLI E, LAGARDE J, DEGUZMAN G C, et al. The phi complex as a neuromarker of human social coordination[J]. Proc Nat Acad Sci U S A, 2007, 104(19): 8190-8195.
doi: 10.1073/pnas.0611453104 |
[41] |
BABILONI C, BUFFO P, VECCHIO F, et al. Brains "in concert": frontal oscillatory alpha rhythms and empathy in professional musicians[J]. NeuroImage, 2012, 60(1): 105-116.
doi: 10.1016/j.neuroimage.2011.12.008 pmid: 22186679 |
[42] |
TOGNOLI E, KELSO J A. The coordination dynamics of social neuromarkers[J]. Front Hum Neurosci, 2015, 9: 563.
doi: 10.3389/fnhum.2015.00563 pmid: 26557067 |
[43] |
LIN J F L, IMADA T, MELTZOFF A N, et al. Dual-MEG interbrain synchronization during turn-taking verbal interactions between mothers and children[J]. Cerebral Cortex, 2023, 33(7): 4116-4134.
doi: 10.1093/cercor/bhac330 |
[44] |
BAIRD G, SIMONOFF E, PICKLES A, et al. Prevalence of disorders of the autism spectrum in a population cohort of children in South Thames: the Special Needs and Autism Project (SNAP)[J]. Lancet, 2006, 368(9531): 210-215.
doi: 10.1016/S0140-6736(06)69041-7 pmid: 16844490 |
[45] |
MANDY W, CHILVERS R, CHOWDHURY U, et al. Sex differences in autism spectrum disorder: evidence from a large sample of children and adolescents[J]. J Autism Dev Disord, 2012, 42(7): 1304-1313.
doi: 10.1007/s10803-011-1356-0 pmid: 21947663 |
[46] |
TIERNEY S, BURNS J, KILBEY E. Looking behind the mask: social coping strategies of girls on the autistic spectrum[J]. Res Autism Spectrum Disord, 2016, 23: 73-83.
doi: 10.1016/j.rasd.2015.11.013 |
[47] |
SONG A, COLA M, PLATE S, et al. Natural language markers of social phenotype in girls with autism[J]. J Child Psychol Psychiatr, 2021, 62(8): 949-960.
doi: 10.1111/jcpp.v62.8 |
[48] |
CHO S, COLA M, KNOX A, et al. Sex differences in the temporal dynamics of autistic children's natural conversations[J]. Mol Autism, 2023, 14(1): 13.
doi: 10.1186/s13229-023-00545-6 pmid: 37024960 |
[49] |
TSENG P H, RAJANGAM S, LEHEW G, et al. Interbrain cortical synchronization encodes multiple aspects of social interactions in monkey pairs[J]. Sci Rep, 2018, 8(1): 4699.
doi: 10.1038/s41598-018-22679-x |
[50] |
MÜLLER V, PERDIKIS D, MENDE M A, et al. Interacting brains coming in sync through their minds: an interbrain neurofeedback study[J]. Ann New York Acad Sci, 2021, 1500(1): 48-68.
doi: 10.1111/nyas.v1500.1 |
[51] |
HU Y, HU Y Y, LI X C, et al. Brain-to-brain synchronization across two persons predicts mutual prosociality[J]. Soc Cogn Affect Neurosci, 2017, 12(12): 1835-1844.
doi: 10.1093/scan/nsx118 pmid: 29040766 |
[52] |
MUTHUKUMARASWAMY S D, JOHNSON B W. A dual mechanism neural framework for social understanding[J]. Philos Psychol, 2007, 20(1): 43-63.
doi: 10.1080/09515080601085864 |
[53] |
RIZZOLATTI G, FADIGA L, GALLESE V, et al. Premotor cortex and the recognition of motor actions[J]. Cogn Brain Res, 1996, 3(2): 131-141.
doi: 10.1016/0926-6410(95)00038-0 |
[54] |
MUKAMEL R, EKSTROM A D, KAPLAN J, et al. Single-neuron responses in humans during execution and observation of actions[J]. Curr Biol, 2010, 20(8): 750-756.
doi: 10.1016/j.cub.2010.02.045 pmid: 20381353 |
[55] |
潘威, 陈巍, 汪寅, 等. 自闭症碎镜理论之迷思:缘起、问题与前景[J]. 心理科学进展, 2016, 24(6): 958-973.
doi: 10.3724/SP.J.1042.2016.00958 |
PAN W, CHEN W, WANG Y, et al. The myth of broken mirror theory of autism: origins, problems and prospects[J]. Adv Psychol Sci, 2016, 24(6): 958-973.
doi: 10.3724/SP.J.1042.2016.00958 |
|
[56] | 张曼, 刘欢欢. 社会交流中人际神经同步的认知机制[J]. 心理科学, 2018, 41(2): 378-383. |
ZHANG M, LIU H H. Cognitive mechanism of interpersonal neural synchronization during social communication[J]. J Psychol Sci, 2018, 41(2): 378-383. | |
[57] |
MITCHELL J P. Inferences about mental states[J]. Philos Trans R Soc Lond B Biol Sci, 2009, 364(1521): 1309-1316.
doi: 10.1098/rstb.2008.0318 |
[58] | 张芸瑕, 康立超, 高彤琪, 等. 孤独症谱系障碍者内隐心理理论研究的新进展[J]. 中国特殊教育, 2023(10): 53-60. |
ZHANG Y X, KANG L C, GAO T Q, et al. New progress in the study of implicit theory of mindin individuals with autism spectrum disorder[J]. Chin J Spec Educ, 2023(10): 53-60 | |
[59] |
RYNKIEWICZ A, SCHULLER B, MARCHI E, et al. An investigation of the 'female camouflage effect' in autism using a computerized ADOS-2 and a test of sex/gender differences[J]. Mol Autism, 2016, 7: 10.
doi: 10.1186/s13229-016-0073-0 pmid: 26798446 |
[60] |
HEAD A M, MCGILLIVRAY J A, STOKES M A. Gender differences in emotionality and sociability in children with autism spectrum disorders[J]. Mol Autism, 2014, 5(1): 19.
doi: 10.1186/2040-2392-5-19 pmid: 24576331 |
[61] |
TOFANI M, SCARCELLA L, GALEOTO G, et al. Behavioral gender differences across pre-school children with autism spectrum disorders: a cross-sectional study[J]. J Autism Dev Disord, 2023, 53(8): 3301-3306.
doi: 10.1007/s10803-022-05498-y |
[62] |
LAWSON L, JOSHI R, BARBARO J, et al. Gender differences during toddlerhood in autism spectrum disorder: a prospective community-based longitudinal follow-up study[J]. J Autism Dev Disord, 2018, 48(8): 2619-2628.
doi: 10.1007/s10803-018-3516-y pmid: 29497988 |
[63] |
HARTLEY S L, SIKORA D M. Sex differences in autism spectrum disorder: an examination of developmental functioning, autistic symptoms, and coexisting behavior problems in toddlers[J]. J Autism Dev Disord, 2009, 39(12): 1715-1722.
doi: 10.1007/s10803-009-0810-8 pmid: 19582563 |
[64] |
BAL V H, KIM S H, FOK M, et al. Autism spectrum disorder symptoms from ages 2 to 19 years: implications for diagnosing adolescents and young adults[J]. Autism Res, 2019, 12(1): 89-99.
doi: 10.1002/aur.2004 pmid: 30101492 |
[65] | HOFFMANN A, SCHELLHORN A M, RITTER M, et al. Blink synchronization increases over time and predicts problem-solving performance in virtual teams[J]. Small Group Res, 2023: 10464964231195618. |
[66] |
MU Y, GUO C Y, HAN S H. Oxytocin enhances inter-brain synchrony during social coordination in male adults[J]. Soc Cogn Affect Neurosci, 2016, 11(12): 1882-1893.
pmid: 27510498 |
[1] | MU Zichen, TANG Qiang, SHI Yunqiu, WANG Yan, ZHU Shuwei, ZHUANG Ya'nan, XU Danshuang, LI Hongyu, LI Baolong, ZHANG Chunyan, YUAN Mengke. Effect of enriched environment combined with acupuncture at head points on behavior in rats with autism spectrum disorder [J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(2): 176-182. |
[2] | SHAO Weiting, LEI Jianghua. Effect of response interruption and redirection as a behavioral intervention on vocal stereotypy in children with autism spectrum disorder: a scoping review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 10-20. |
[3] | WEI Xiaowei, YANG Jian, WEI Chunyan. Psychological and behavioral benefits of adapted yoga exercise for children with autism spectrum disorder in special education schools: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1021-1028. |
[4] | GENG Limeng, LIU Congcong, LI Ling, LÜ Panpan, WANG Xin, LIU Fang. Psychological and behavioral characteristics of children with autism spectrum disorder using Psycho-educational Profile (Third Edition) [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1035-1039. |
[5] | ZHANG Yuan, YANG Jian. School health services and effectiveness based on World Health Organization health-promoting school framework: a scoping review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 791-799. |
[6] | YUAN Yuan, YANG Jian. Health benefits of integrating physical activity with chronic disease management in community-dwelling older adults: a scoping review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(5): 541-550. |
[7] | ZHU Kaixuan, WANG Yuxiang, WANG Xianna, ZHANG Yan, WANG Yunlei, ZHANG Haojie, BAI Chen, LI Xingzhu, ZHANG Tong. Sleep disturbance and association with social behavior in preschool children with autism spectrum disorder [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(5): 608-614. |
[8] | CAO Yuhan, LI Jin, HE Min, WANG Dan, CHEN Wei. Telerehabilitation for patients with coronary heart disease based on ICF: a scoping review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(4): 433-442. |
[9] | HUANG Kaiqi, XIN Rong, LING Gengqiang, WANG Pu. Repetitive transcranial magnetic stimulation for lower limb dysfunction post stroke: a scoping review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(3): 286-293. |
[10] | SONG Beibei, LIU Hui, BAI Kaixiang. Content and psychological measurement index of ICF-CY-based motor function evaluation scale for children and adolescents with disabilities: a scoping review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(2): 182-192. |
[11] | CHENG Siman, XIN Rong, ZHAO Yan, LIU Qingyu, XIE Jiale, LIU Peng, WANG Pu. Functional magnetic resonance imaging study about repetitive transcranial magnetic stimulation for dysfunction after stroke: a scoping review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(2): 193-204. |
[12] | SHI Xiaoyu, YANG Jian. Adaptive physical activity and its health benefits for patients with spinal cord injury based on ICF: a scoping review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(12): 1395-1404. |
[13] | HU Jiaquan, ZHU Liling, JIANG Zhimei. Early screening tools for autism spectrum disorder in the past two decades: a visualized analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(11): 1304-1315. |
[14] | WANG Xinting, YANG Jian. Structured physical activity programs for children with autism spectrum disorders and their health benefits: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(10): 1117-1124. |
[15] | HU Qingkui, YIN Hang, JIA Shaohui, LIU Hui. Prevalence, types, risk factors and intervention strategies of sport injury for Paralympic athletes: a scoping review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(10): 1154-1163. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|