《Chinese Journal of Rehabilitation Theory and Practice》 ›› 2023, Vol. 29 ›› Issue (12): 1405-1419.doi: 10.3969/j.issn.1006-9771.2023.12.005
Previous Articles Next Articles
WANG Haifang1, XU Minjie1, LI Ying1, LEI Xiaojing2, CHANG Jingling1()
Received:
2023-08-08
Revised:
2023-10-26
Published:
2023-12-25
Online:
2023-12-28
Contact:
CHANG Jingling, E-mail: Supported by:
CLC Number:
WANG Haifang, XU Minjie, LI Ying, LEI Xiaojing, CHANG Jingling. Application of functional near-infrared spectroscopy in stroke: a visualized analysis[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(12): 1405-1419.
"
聚类ID | 包含作者 | 共现关键词 | 高被引研究内容 |
---|---|---|---|
1 | Xie Hui、Li Wenhao、Huo Congcong、Fan Yubo、Li Huiyuan、Sun Aiping、Lü Zeping、Zhang Xuemin、Chen Wei、Zhao Haihong、Xu Gongcheng、Liu Qianying、Wang Daifa、Li Zengyong、Zhang Simin | 脑卒中、功能性近红外光谱、脑功能连接性、虚拟现实疗法、镜像疗法、脑活性等 | 通过小波相位相干性分析评估前额叶组织氧合血红蛋白振荡的相位关系;神经电刺激后脑卒中患者皮质网络内的有效连接变化 |
2 | Jing Jing、Li Xinglou、Song Ying、Ma Yanping、 Wang Yonghui、Sun Zhifang | 脑卒中、功能性近红外光谱、脑功能连接性、电刺激、肌电图、康复等 | 神经电刺激后可以触发感觉运动刺激,并导致脑卒中后远程皮质区域的功能重组;语言训练和神经电刺激可以增强失语患者大脑皮质活性和功能连接性 |
3 | Liu Huihua、Song Rong、Yan Tiebin、Jian Chuyao、Deng Linchuan | 脑卒中、功能性近红外光谱、运动控制、偏瘫、吞咽困难等 | 偏瘫患者的感觉运动皮质静息态功能连接的变化与侧化和神经可塑性;肌间协调在精细运动控制中起着重要作用 |
4 | Fan Zhijun、Wang Zilin、Zhang Yanjie、Liu Heshan | 脑卒中、功能性近红外光谱、康复游戏、脑区激活等 | 基于视频游戏的康复训练对大脑皮质激活和功能连接的效果;有效的评估和设计康复产品的方法是当前研究的热点 |
5 | Yin Jiahui、Xie Hui、Li Xin、Dou Zulin | 脑卒中、功能性近红外光谱、脑功能重组、虚拟现实、脑活性等 | 不同干预方式下脑部激活和网络再组织的动态过程;静息状态、单一动作和虚拟现实动作期间不同脑区皮质氧合信号 |
6 | Gong Anmin、Qian Qian、Zhao Lei | 脑卒中、功能性近红外光谱、运动康复、功能连接性、动态贝叶斯推断等 | 通过连续小波分析和耦合函数评估动脉血压与脑部氧合血红蛋白浓度变化振荡之间关系;认知-运动双任务训练在脑卒中后认知障碍但无痴呆的患者中的疗效证据 |
"
序号 | 期刊 | 发文量 | 占比/% | 影响因子 |
---|---|---|---|---|
1 | Frontiers in Neurology | 22 | 5.80 | 5.7 |
2 | Frontiers in Human Neuroscience | 16 | 4.22 | 2.9 |
3 | Frontiers in Neuroscience | 16 | 4.22 | 4.3 |
4 | Brain Sciences | 10 | 2.63 | 3.3 |
5 | Ieee Transactions on Neural Systems and Rehabilitation Engineering | 9 | 2.37 | 4.9 |
6 | Journal of Neuroengineering and Rehabilitation | 8 | 2.11 | 5.1 |
7 | Journal of Biomedical Optics | 8 | 2.11 | 3.5 |
8 | Brain Topography | 8 | 2.11 | 2.7 |
9 | Journal of Cerebral Blood Flow and Metabolism | 8 | 2.11 | 6.3 |
10 | Journal of Neural Engineering | 7 | 1.85 | 4 |
10 | Neurorehabilitation and Neural Repair | 7 | 1.85 | 4.2 |
10 | Stroke | 7 | 1.85 | 8.8 |
"
关键词 | 频次 /n | 关键词 | 频次 /n | 关键词 | 频次 /n |
---|---|---|---|---|---|
functional near-infrared spectroscopy | 201 | gait training | 27 | cerebral hemodynamic functional response | 13 |
stroke | 193 | functional hemodynamic monitoring | 27 | dual task | 13 |
spectroscopy, near-infrared | 74 | magnetic resonance imaging, functional | 21 | neural plasticity | 12 |
rehabilitation | 48 | neurological rehabilitation | 18 | functional electrical stimulation | 11 |
motor training | 35 | brain activation | 15 | robot-assisted rehabilitation | 11 |
cortex activation | 34 | motor control | 15 | upper-limb rehabilitation | 11 |
electroencephalography | 33 | transcrancial magnetic stimulation | 15 | cerebral blood flow monitoring | 10 |
brain functional connectivity | 30 | cortical neuroplasticity | 14 | neuronal plasticity | 10 |
brain-computer interfaces | 29 | neuroimaging | 14 | virtual reality exposure therapy | 10 |
prefrontal cortex | 27 | motor cortex | 12 | balance rehabilitation | 10 |
"
关键词 | 强度 | 开始 | 结束 | 1996-2023 |
---|---|---|---|---|
cerebral blood flow monitoring | 2.32 | 1996 | 2013 | ▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂ |
magnetic resonance imaging, functional | 4.05 | 1997 | 2011 | ▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂ |
functional hemodynamic monitoring | 4.55 | 1999 | 2011 | ▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂ |
functional electrical stimulation | 4.25 | 2009 | 2016 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▂▂▂▂▂▂ |
spectroscopy, near-infrared | 5.62 | 2009 | 2015 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▂▂▂▂▂▂▂ |
functional near-infrared spectroscopy | 6.55 | 2011 | 2015 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂▂▂▂▂ |
prefrontal cortex | 5.57 | 2018 | 2019 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▂▂▂▂▂ |
motor recovery | 4.10 | 2018 | 2019 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▂▂▂▂▂ |
cognition | 4.08 | 2019 | 2021 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂ |
brain-computer interfaces | 4.07 | 2017 | 2023 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃ |
[1] |
FESKE S K. Ischemic stroke[J]. Am J Med, 2021, 134(12): 1457-1464.
doi: 10.1016/j.amjmed.2021.07.027 pmid: 34454905 |
[2] | «中国卒中报告»编写委员会. 中国卒中报告2020(中文版)(1)[J]. 中国卒中杂志, 2022, 17(5): 433-447. |
China Stroke Statistics 2020 Writing Committee. Writing Committee. China Stroke Statistics 2020 (1)[J]. Chin J Stroke, 2022, 17(5): 433-447. | |
[3] | OWOLABI M O, THRIFT A G, MAHAL A, et al. Primary stroke prevention worldwide: translating evidence into action[J]. Lancet Public Health, 2022, 7(1): 74-85. |
[4] | 近红外脑功能成像临床应用专家共识编写组. 近红外脑功能成像临床应用专家共识[J]. 中国老年保健医学, 2021, 19(2): 3-9. |
Near-infrared Brain Functional Imaging Clinical Application Expert Joint Writing Group. Expert consensus on clinical application of near-infrared brain functional imaging technology[J]. Chin J Geriatr Med, 2021, 19(2): 3-9. | |
[5] |
SU H, HUO C, WANG B, et al. Alterations in the coupling functions between cerebral oxyhaemoglobin and arterial blood pressure signals in post-stroke subjects[J]. PLoS One, 2018, 13(4): e0195936.
doi: 10.1371/journal.pone.0195936 |
[6] |
LI Q, FENG J, GUO J, et al. Effects of the multisensory rehabilitation product for home-based hand training after stroke on cortical activation by using NIRS methods[J]. Neurosci Lett, 2019, 717: 134682.
doi: 10.1016/j.neulet.2019.134682 |
[7] |
LIU Q, WANG B, LIU Y, et al. Frequency-specific effective connectivity in subjects with cerebral infarction as revealed by NIRS method[J]. Neuroscience, 2018, 373: 169-181.
doi: S0306-4522(18)30023-X pmid: 29337235 |
[8] | SI X, XIANG S, ZHANG L, et al. The hemodynamic response and functional connectivity of the cortical network are modulated by acupuncture[J]. Int J Psychophysiol, 2021, 168(9): S196. |
[9] |
GREGORI-PLA C, BLANCO I, CAMPS-RENOM P, et al. Early microvascular cerebral blood flow response to head-of-bed elevation is related to outcome in acute ischemic stroke[J]. Neurol, 2019, 266: 990-997.
doi: 10.1007/s00415-019-09226-y |
[10] |
KASSAB A, LE LAN J, TREMBLAY J, et al. Multichannel wearable fNIRS-EEG system for long-term clinical monitoring[J]. Human Brain Mapping, 2018, 39(1): 7-23.
doi: 10.1002/hbm.23849 pmid: 29058341 |
[11] |
LU K, XU G, LI W, et al. Frequency-specific functional connectivity related to the rehabilitation task of stroke patients[J]. Med Phys, 2019, 46(4): 1545-1560.
doi: 10.1002/mp.13398 pmid: 30675729 |
[12] |
HUO C, XU G, LI Z, et al. Limb linkage rehabilitation training-related changes in cortical activation and effective connectivity after stroke: a functional near-infrared spectroscopy study[J]. Sci Rep, 2019, 9(1): 6226-6243.
doi: 10.1038/s41598-019-42674-0 pmid: 30996244 |
[13] |
AL-YAHYA E, JOHANSEN-BERG H, KISCHKA U, et al. Prefrontal cortex activation while walking under dual-task conditions in stroke: a multimodal imaging study[J]. Neurorehabil Neural Repair, 2016, 30(6): 591-599.
doi: 10.1177/1545968315613864 |
[14] | CHU M, ZHANG Y, CHEN J, et al. Efficacy of intermittent theta-burst stimulation and transcranial direct current stimulation in treatment of post-stroke cognitive impairment[J]. Integr Neurosci, 2022, 21(5): 130. |
[15] |
XU G, HUO C, YIN J, et al. Effective brain network analysis in unilateral and bilateral upper limb exercise training in subjects with stroke[J]. Med Phys, 2022, 49(5): 3333-3346.
doi: 10.1002/mp.15570 pmid: 35262918 |
[16] |
PANG R, WANG D, CHEN T S R, et al. Reorganization of prefrontal network in stroke patients with dyskinesias: evidence from resting-state functional near-infrared spectroscopy[J]. J Biophotonics, 2022, 15(7): e202200014.
doi: 10.1002/jbio.v15.7 |
[17] |
PETERSEN N H, SILVERMAN A, STRANDER S M, et al. Fixed compared with autoregulation-oriented blood pressure thresholds after mechanical thrombectomy for ischemic stroke[J]. Stroke, 2020, 51(3): 914-921.
doi: 10.1161/STROKEAHA.119.026596 pmid: 32078493 |
[18] |
KIM H, KIM J, LEE G, et al. Task-related hemodynamic changes induced by high-definition transcranial direct current stimulation in chronic stroke patients: an uncontrolled pilot fNIRS study[J]. Brain Sci, 2022, 12(4): 453.
doi: 10.3390/brainsci12040453 |
[19] |
LEE G, LEE J, KIM J, et al. Whole brain hemodynamic response based on synchrony analysis of brain signals for effective application of HD-tDCS in stroke patients: an fNIRS study[J]. J Pers Med, 2022, 12(3): 432.
doi: 10.3390/jpm12030432 |
[20] | PRITCHARD A. Statistical bibliography or bibliometric[J]. J Document, 1969, 25(4): 348-349. |
[21] |
THOMPSON D F, WALKER C K. A descriptive and historical review of bibliometrics with applications to medical sciences[J]. Pharmacotherapy, 2015, 35(6): 551-559.
doi: 10.1002/phar.2015.35.issue-6 |
[22] | 郭俊, 杜冠潮, 赵丰, 等. 基于VOSviewer与CiteSpace的良性前列腺增生中医药研究现状与趋势的知识图谱分析[J]. 世界科学技术-中医药现代化, 2021, 23(6): 1902-1908. |
GUO J, DU G C, ZHAO F, et al. Knowledge graph analysis of research status and trend of traditional chinese medicine in benign prostatic hyperplasia based on VOSviewer and CiteSpace[J]. World Sci Technol-Modernisation Tradit Chin Med, 2021, 23(6): 1902-1908. | |
[23] |
徐敏杰, 王博, 周莉, 等. 基于Web of Science数据库脑卒中后语言与非语言认知功能研究的可视化分析[J]. 中国康复理论与实践, 2023, 29(4): 452-464.
doi: 10.3969/j.issn.1006-9771.2023.04.011 |
XU M J, WANG B, ZHOU L, et al. Visual analysis of post-stroke verbal and non-verbal cognitive function studies based on Web of Science database[J]. Chin J Rehabil Theory Pract, 2023, 29(4): 452-464. | |
[24] |
HUO C, XU G, SUN A, et al. Cortical response induced by task-oriented training of the upper limb in subacute stroke patients as assessed by functional near-infrared spectroscopy[J]. J Biophotonics, 2023, 16(3): e202200228.
doi: 10.1002/jbio.v16.3 |
[25] |
HUO C, SUN Z, XU G, et al. fNIRS-based brain functional response to robot-assisted training for upper-limb in stroke patients with hemiplegia[J]. Front Aging Neurosci, 2022, 14: 1060734.
doi: 10.3389/fnagi.2022.1060734 |
[26] |
YU J, ZHANG X, YANG J, et al. A functional near-infrared spectroscopy study of the effects of video game-based bilateral upper limb training on brain cortical activation and functional connectivity[J]. Exp Gerontol, 2022, 169(1): 111962.
doi: 10.1016/j.exger.2022.111962 |
[27] |
CHU Q, GUO X, ZHANG T, et al. Stroke-related alterations in the brain's functional connectivity response associated with upper limb multi-joint linkage movement[J]. Brain Sci, 2023, 13(2): 338.
doi: 10.3390/brainsci13020338 |
[28] | SOLLER B R, ZOU F, RYAN K L, et al. Lightweight noninvasive trauma monitor for early indication of central hypovolemia and tissue acidosis: a review[J]. Trauma Acute Care Surg, 2012, 73(2): S106-S111. |
[29] |
KASHOU N H, GIACHERIO B M, NAHHAS R W, et al. Hand-grasping and finger tapping induced similar functional near-infrared spectroscopy cortical responses[J]. Neurophotonics, 2016, 3(2): 25006.
doi: 10.1117/1.NPh.3.2.025006 pmid: 27335888 |
[30] |
HEIBERG A V, SIMONSEN S A, SCHYTZ H W, et al. Cortical hemodynamic response during cognitive Stroop test in acute stroke patients assessed by fNIRS[J]. Neurorehabilitation, 2023, 52(2): 199-217.
doi: 10.3233/NRE-220171 pmid: 36641686 |
[31] |
GUO C, SUI Y, XU S, et al. Contralaterally controlled neuromuscular electrical stimulation-induced changes in functional connectivity in patients with stroke assessed using functional near-infrared spectroscopy[J]. Front Neural Circuits, 2022, 16: 955728.
doi: 10.3389/fncir.2022.955728 |
[32] |
ZIPFEL J, BANTLE S J, MAGUNIA H, et al. Non-invasive cerebral autoregulation monitoring during awake carotid endarterectomy identifies clinically significant brain ischaemia[J]. Eur J Vasc Endovasc Surg, 2020, 60(5): 647-654.
doi: 10.1016/j.ejvs.2020.07.076 |
[33] | 李杰, 陈超美. CiteSpace科技文本挖掘及可视化[M]. 北京: 首都经济贸易大学出版社, 2016. |
LI J, CHEN C M. CiteSpace technology text mining and visualisation[M]. Beijing: Capital University of Economics and Business Press, 2016. | |
[34] |
PETERSEN N H, SILVERMAN A, STRANDER S M, et al. Fixed compared with autoregulation-oriented blood pressure thresholds after mechanical thrombectomy for ischemic stroke[J]. Stroke, 2020, 51(3): 914-921.
doi: 10.1161/STROKEAHA.119.026596 pmid: 32078493 |
[35] |
MIHARA M, HATTORI N, HATAKENAKA M, et al. Near-infrared spectroscopy-mediated neurofeedback enhances efficacy of motor imagery-based training in poststroke victims: a pilot study[J]. Stroke, 2013, 44(4): 1091.
doi: 10.1161/STROKEAHA.111.674507 pmid: 23404723 |
[36] |
COMPAGNAT M, DAVIET J C, HERMAND E, et al. Impact of a dual task on the energy cost of walking in individuals with subacute phase stroke[J]. Brain Inj, 2023, 37(2): 114-121.
doi: 10.1080/02699052.2023.2165153 |
[37] |
ZOU J, YIN Y, LIN Z, et al. The analysis of brain functional connectivity of post-stroke cognitive impairment patients: an fNIRS study[J]. Front Neurosci, 2023, 17: 1168773.
doi: 10.3389/fnins.2023.1168773 |
[38] |
LIU Y, LUO J, FANG J, et al. Screening diagnosis of executive dysfunction after ischemic stroke and the effects of transcranial magnetic stimulation: a prospective functional near-infrared spectroscopy study[J]. CNS Neurosci Ther, 2023, 29(6): 1561-1570.
doi: 10.1111/cns.14118 pmid: 36786133 |
[39] |
WU Y, DONG Y, TANG Y, et al. Relationship between motor performance and cortical activity of older neurological disorder patients with dyskinesia using fNIRS: a systematic review[J]. Front Physiol, 2023, 14: 1153469.
doi: 10.3389/fphys.2023.1153469 |
[40] |
LI H, LIU J, TIAN S, et al. Language reorganization patterns in global aphasia: evidence from fNIRS[J]. Front Neurol, 2022, 13: 1025384.
doi: 10.3389/fneur.2022.1025384 |
[41] |
CHEN N, QIU X, HUA Y, et al. Effects of sequential inhibitory and facilitatory repetitive transcranial magnetic stimulation on neurological and functional recovery of a patient with chronic stroke: a case report and literature review[J]. Front Neurol, 2023, 14: 1064718.
doi: 10.3389/fneur.2023.1064718 |
[42] | CHEN Y, SU W, GUI C F, et al. Effectiveness of cerebellar vermis intermittent theta-burst stimulation in improving trunk control and balance function for patients with subacute stroke: a randomised controlled trial protocol[J]. BMJ Open, 2023, 13(1): e66356. |
[43] |
NI J, JIANG W, GONG X, et al. Effect of rTMS intervention on upper limb motor function after stroke: a study based on fNIRS[J]. Front Aging Neurosci, 2022, 14: 1077218.
doi: 10.3389/fnagi.2022.1077218 |
[44] |
HUO C, XU G, XIE H, et al. Effect of high-frequency rTMS combined with bilateral arm training on brain functional network in patients with chronic stroke: an fNIRS study[J]. Brain Res, 2023, 1809: 148357.
doi: 10.1016/j.brainres.2023.148357 |
[45] |
CASSIDY J M, MARK J I, CRAMER S C. Functional connectivity drives stroke recovery: shifting the paradigm from correlation to causation[J]. Brain, 2022, 145(4): 1211-1228.
doi: 10.1093/brain/awab469 |
[46] | ALMULLA L, AL-NAIB I, ATEEQ I S, et al. Observation and motor imagery balance tasks evaluation: an fNIRS feasibility study[J]. PLoS One, 2022, 17(3): e265898. |
[47] |
PANG R, WANG D, CHEN T, et al. Reorganization of prefrontal network in stroke patients with dyskinesias: evidence from resting-state functional near-infrared spectroscopy[J]. J Biophotonics, 2022, 15(7): e202200014.
doi: 10.1002/jbio.v15.7 |
[48] |
LIU H, PENG Y, LIU Z, et al. Hemodynamic signal changes and swallowing improvement of repetitive transcranial magnetic stimulation on stroke patients with dysphagia: a randomized controlled study[J]. Front Neurol, 2022, 13: 918974.
doi: 10.3389/fneur.2022.918974 |
[49] | NGUYEN V T, LU Y H, WU C W, et al. Evaluating interhemispheric synchronization and cortical activity in acute stroke patients using optical hemodynamic oscillations[J]. J Neural Eng, 2022, 19(3). DOI: 10.1088/1741-2552/ac73b4. |
[50] | LIN S, LIN Q, ZHAO B, et al. Dual-task stroop paradigm for detecting cognitive deficits in high-functioning stroke patients[J]. J Vis Exp, 2022(190). DOI: 10.3791/63991. |
[51] | MIHARA M, FUJIMOTO H, HATTORI N, et al. Effect of neurofeedback facilitation on poststroke gait and balance recovery: a randomized controlled trial[J]. Neurology, 2021, 96(21): e2587-e2598. |
[52] |
CHEN S, SHU X, WANG H, et al. The differences between motor attempt and motor imagery in brain-computer interface accuracy and event-related desynchronization of patients with hemiplegia[J]. Front Neurorobot, 2021, 15: 706630.
doi: 10.3389/fnbot.2021.706630 |
[53] |
CHEN Y H, SAWAN M. Trends and challenges of wearable multimodal technologies for stroke risk prediction[J]. Sensors (Basel), 2021, 21(2): 460.
doi: 10.3390/s21020460 |
[54] |
ZHENG J, MA Q, HE W, et al. Cognitive and motor cortex activation during robot-assisted multi-sensory interactive motor rehabilitation training: an fNIRS based pilot study[J]. Front Hum Neurosci, 2023, 17: 1089276.
doi: 10.3389/fnhum.2023.1089276 |
[55] |
JIANG Y C, MA R, QI S, et al. Characterization of bimanual cyclical tasks from single-trial EEG-fNIRS measurements[J]. IEEE Trans Neural Syst Rehabil Eng, 2022, 30: 146-156.
doi: 10.1109/TNSRE.2022.3144216 |
[56] |
YUAN Z, XU W, BAO J, et al. Task-state cortical motor network characteristics by functional near-infrared spectroscopy in subacute stroke show hemispheric dominance[J]. Front Aging Neurosci, 2022, 14: 932318.
doi: 10.3389/fnagi.2022.932318 |
[57] |
KIM H, LEE G, LEE J, et al. Alterations in learning-related cortical activation and functional connectivity by high-definition transcranial direct current stimulation after stroke: an fNIRS study[J]. Front Neurosci, 2023, 17: 1189420.
doi: 10.3389/fnins.2023.1189420 |
[58] | MATARASSO A K, RIEKE J D, WHITE K, et al. Combined real-time fMRI and real time fNIRS brain computer interface (BCI): training of volitional wrist extension after stroke, a case series pilot study[J]. PLoS One, 2021, 16(5): e250431. |
[59] |
LIANG J, SONG Y, BELKACEM A N, et al. Prediction of balance function for stroke based on EEG and fNIRS features during ankle dorsiflexion[J]. Front Neurosci, 2022, 16: 968928.
doi: 10.3389/fnins.2022.968928 |
[60] |
KHAN H, NASEER N, YAZIDI A, et al. Analysis of human gait using hybrid EEG-fNIRS-based BCI system: a review[J]. Front Hum Neurosci, 2020, 14: 613254.
doi: 10.3389/fnhum.2020.613254 |
[61] |
WANG D, HUANG Y, LIANG S, et al. The identification of interacting brain networks during robot-assisted training with multimodal stimulation[J]. J Neural Eng, 2023, 20(1): 016009.
doi: 10.1088/1741-2552/acae05 |
[62] |
CHAN A S, LEE T L, HAMBLIN M R, et al. Photobiomodulation enhances memory processing in older adults with mild cognitive impairment: a functional near-infrared spectroscopy study[J]. J Alzheimers Dis, 2021, 83(4): 1471-1480.
doi: 10.3233/JAD-201600 pmid: 33998541 |
[63] |
ANSADO J, CHASEN C, BOUCHARD S, et al. How brain imaging provides predictive biomarkers for therapeutic success in the context of virtual reality cognitive training[J]. Neurosci Biobehav Rev, 2021, 120: 583-594.
doi: 10.1016/j.neubiorev.2020.05.018 pmid: 32533997 |
[64] |
SUN R, LI X, ZHU Z, et al. Effects of dual-task training in patients with post-stroke cognitive impairment: a randomized controlled trial[J]. Front Neurol, 2022, 13: 1027104.
doi: 10.3389/fneur.2022.1027104 |
[65] |
LI X, YIN J, LI H, et al. Effects of ordered grasping movement on brain function in the performance virtual reality task: a near-infrared spectroscopy study[J]. Front Hum Neurosci, 2022, 16: 798416.
doi: 10.3389/fnhum.2022.798416 |
[66] |
LI X, FANG F, LI R, et al. Functional brain controllability alterations in stroke[J]. Front Bioeng Biotechnol, 2022, 10: 925970.
doi: 10.3389/fbioe.2022.925970 |
[67] |
LIN Q, ZHANG Y, ZHANG Y, et al. The frequency effect of the motor imagery brain computer interface training on cortical response in healthy subjects: a randomized clinical trial of functional near-infrared spectroscopy study[J]. Front Neurosci, 2022, 16: 810553.
doi: 10.3389/fnins.2022.810553 |
[68] |
LIU L, JIN M, ZHANG L, et al. Brain-computer interface-robot training enhances upper extremity performance and changes the cortical activation in stroke patients: a functional near-infrared spectroscopy study[J]. Front Neurosci, 2022, 16: 809657.
doi: 10.3389/fnins.2022.809657 |
[69] |
SIMIS M, IMAMURA M, SAMPAIO D M P, et al. Deficit of inhibition as a marker of neuroplasticity (DEFINE study) in rehabilitation: a longitudinal cohort study protocol[J]. Front Neurol, 2021, 12: 695406.
doi: 10.3389/fneur.2021.695406 |
[70] |
KALRA L, DOBKIN B H. Facilitating mental imagery to improve mobility after stroke: all in the head[J]. Neurology, 2021, 96(21): 975-976.
doi: 10.1212/WNL.0000000000011993 |
[71] |
MARIA A, HIRVI P, KOTILAHTI K, et al. Imaging affective and non-affective touch processing in two-year-old children[J]. Neuroimage, 2022, 251: 118983.
doi: 10.1016/j.neuroimage.2022.118983 |
[72] |
ZHANG T, XU G, HUO C, et al. Cortical hemodynamic response and networks in children with cerebral palsy during upper limb bilateral motor training[J]. J Biophotonics, 2023, 16(5): e202200326.
doi: 10.1002/jbio.v16.5 |
[73] | DIX L M L, SHEPHERD K, POLGLASE G R, et al. The cerebral hemodynamic response to pain in preterm infants with fetal growth restriction[J]. Front Pediatr, 2020, 27(8): 268. |
[74] |
HU X, ZHUANG C, WANG F, et al. fNIRS evidence for recognizably different positive emotions[J]. Front Hum Neurosci, 2019, 9(13): 120.
doi: 10.3389/fpsyg.2018.00120 |
[75] |
WU Y, TANG L, SHI X, et al. Effects of tDCS on depression and comorbid generalized anxiety disorder: a brain function imaging case report[J]. Front Neurol, 2022, 13(13): 879339.
doi: 10.3389/fneur.2022.879339 |
[76] |
YANG C, ZHANG T, HUANG K, et al. Increased both cortical activation and functional connectivity after transcranial direct current stimulation in patients with post-stroke: a functional near-infrared spectroscopy study[J]. Front Psychiatry, 2022, 13: 1046849.
doi: 10.3389/fpsyt.2022.1046849 |
[77] |
WU Y J, HOU X, PENG C, et al. Rapid learning of a phonemic discrimination in the first hours of life[J]. Nat Hum Behav, 2022, 6(8): 1169-1179.
doi: 10.1038/s41562-022-01355-1 pmid: 35654965 |
[78] |
NOSAKA S, IMADA K, SAITA K, et al. Prefrontal activation during dual-task seated stepping and walking performed by subacute stroke patients with hemiplegia[J]. Front Neurosci, 2023, 17: 1169744.
doi: 10.3389/fnins.2023.1169744 |
[79] |
ZHENG J, MA Q, HE W, et al. Cognitive and motor cortex activation during robot-assisted multi-sensory interactive motor rehabilitation training: an fNIRS based pilot study[J]. Front Hum Neurosci, 2023, 17: 1089276.
doi: 10.3389/fnhum.2023.1089276 |
[80] |
CHEN P, WANG W, LIU R, et al. Olfactory sensory experience regulates gliomagenesis via neuronal IGF1[J]. Nature, 2022, 606(7914): 550-556.
doi: 10.1038/s41586-022-04719-9 |
[81] |
LI H, FU X, LU L, et al. Upper limb intelligent feedback robot training significantly activates the cerebral cortex and promotes the functional connectivity of the cerebral cortex in patients with stroke: a functional near-infrared spectroscopy study[J]. Front Neurol, 2023, 14: 1042254.
doi: 10.3389/fneur.2023.1042254 |
[82] |
WANG X, LUO Z, ZHANG M, et al. The interaction between changes of muscle activation and cortical network dynamics during isometric elbow contraction: a sEMG and fNIRS study[J]. Front Bioeng Biotechnol, 2023, 11: 1176054.
doi: 10.3389/fbioe.2023.1176054 |
[1] | LIN Na, GAO Hanlu, LU Huiping, CHEN Yanqing, ZHENG Junfan, CHEN Shurong. Effect of virtual reality on upper limb function after stroke: a study of diffusion tensor imaging [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 61-67. |
[2] | WANG Haoyi, SHI Yawei, LU Jun, XU Guangxu. Impact of subjective vertical perception impairment on function in stroke patients: a retrospective study [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 68-73. |
[3] | CHEN Junwen, CHEN Qian, CHEN Cheng, LI Shuyue, LIU Lingling, WU Cunshu, GONG Xiang, LU Jun, XU Guangxu. Effect of modified Baduanjin exercise on cardiopulmonary function, motor function and activities of daily living for stroke patients [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 74-80. |
[4] | HU Yonglin, MA Ying, DOU Chao, LU Anmin, JIANG Xiaoge, SONG Xinjian, XIAO Yuhua. Effect of neural mobilization based on shoulder control training on shoulder pain and upper limb function in stroke patients with hemiplegia [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 81-86. |
[5] | WANG He, HAN Liang, KAN Mengfan, YU Shaohong. Efficacy of electrical stimulation on shoulder-hand syndrome after stroke: a systematic review and meta-analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1048-1056. |
[6] | SUN Tengfang, REN Mengting, YANG Lin, WANG Yaoting, WANG Hongyu, YAN Xingzhou. Effect of hyperbaric oxygen therapy combined with repetitive peripheral magnetic stimulation on ankle motor function and balance of stroke patients [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 875-881. |
[7] | WANG Ya'nan, LIU Xihua. Correlation and predictive effect of subjective and objective balance function measurements in stroke patients with hemiplegia [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 890-895. |
[8] | WANG Haiyun, WANG Yin, ZHOU Xinjie, HE Aiqun. Effect of transcranial direct current stimulation combined with acupuncture on central and upper limb function in stroke patients based on central-peripheral-central theory [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 919-925. |
[9] | CHEN Yiting, WANG Qian, CUI Shenhong, LI Yingcai, ZHANG Siyu, WEI Yanxu, REN Hui, LENG Jun, CHEN Bin. Effect of bilateral sequential repetitive transcranial magnetic stimulation on motor function of upper limbs in stroke patients [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 926-932. |
[10] | LI Zhenya, SUN Jie, GUO Pengfei, WANG Guangming. Correlation between changes of swallowing function in oral and pharyngeal phases, and aspiration in stroke patients based on videofluroscopic swallowing study [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 933-939. |
[11] | LIU Ning, LIU Yuquan, ZHU Bin, YU Lingjia, TAN Haining, YANG Yong, LI Xiang. Application of International Standards for Neurological Classification of Spinal Cord Injury in China: a bibliometrics re-analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 808-815. |
[12] | HUA Ling, ZHANG Yi'nan, ZHENG Yu, SUN Qiaoyi, FANG Hui, SONG Da. Effect of hand controlled rhythm music therapy on unilateral spatial neglect after stroke [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 833-838. |
[13] | JIANG Xiaocui, LIU Zhen, SU Qinglun, ZHAO Qin, XIA Xiaomei, LU Fei. Effect of intermittent theta burst transcranial magnetic stimulation on non-fluent aphasia after stroke [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 839-843. |
[14] | XU Miaomiao, LI Nan, YING Ying, YANG Kaixiang, YANG Jingrui, LI Jie, QIU Yanqun. Effect of repetitive peripheral magnetic stimulation on upper limb motor function of stroke patients after contralateral seventh cervical nerve transfer [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(6): 686-690. |
[15] | ZHENG Li, BAO Zhicheng, ZHANG Qi, REN Xuyan, SU Min. Effect of transcutaneous auricular vagus nerve stimulation combined with robot-assisted therapy on upper limb function of stroke patients [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(6): 691-696. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|