《Chinese Journal of Rehabilitation Theory and Practice》 ›› 2023, Vol. 29 ›› Issue (6): 731-737.doi: 10.3969/j.issn.1006-9771.2023.06.016
Previous Articles Next Articles
LI Dan1, WANG Jianxiong1,2, HUANG Maomao1, XU Fangyuan1, ZENG Qiu1, LI Jiyang1, LI Yang1, XIA Cuihong1, ZHENG Yadan1, XU Zhangyu1, FANG Wenfeng1, WAN Tenggang1()
Received:
2023-03-01
Revised:
2023-04-28
Published:
2023-06-25
Online:
2023-07-14
Contact:
E-mail: Supported by:
CLC Number:
LI Dan, WANG Jianxiong, HUANG Maomao, XU Fangyuan, ZENG Qiu, LI Jiyang, LI Yang, XIA Cuihong, ZHENG Yadan, XU Zhangyu, FANG Wenfeng, WAN Tenggang. Surface electromyography of lower limb muscles in healthy middle-aged and old women during stair ascent and descent[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(6): 731-737.
"
肌肉 | 启动阶段 | 跟随阶段 | t值a | P值a | t值b | P值b | t值c | P值c | t值d | P值d | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
左侧 | 右侧 | 左侧 | 右侧 | ||||||||||
股外侧肌 | 32.29±6.24 | 35.51±8.74 | 21.20±6.00 | 20.68±6.37 | 1.570 | 0.133 | 0.316 | 0.756 | -9.451 | < 0.001 | -10.780 | < 0.001 | |
股直肌 | 27.53±5.92 | 25.68±6.34 | 16.61±5.18 | 16.73±5.62 | -1.468 | 0.158 | -0.099 | 0.922 | -12.526 | < 0.001 | -8.350 | < 0.001 | |
股内侧肌 | 32.56±9.72 | 28.71±5.86 | 18.53±8.51 | 17.13±6.74 | -1.986 | 0.062 | 0.718 | 0.481 | -10.090 | < 0.001 | -6.550 | < 0.001 | |
股二头肌 | 26.46±9.22 | 21.90±5.70 | 30.50±10.22 | 33.58±12.52 | -2.495 | 0.022 | -1.012 | 0.324 | 1.805 | 0.087 | 4.540 | < 0.001 | |
半腱肌 | 26.63±8.23 | 25.12±7.58 | 34.76±12.66 | 33.56±10.98 | -0.816 | 0.425 | 0.410 | 0.686 | 3.559 | 0.002 | 5.080 | < 0.001 |
"
肌肉 | 启动阶段 | 跟随阶段 | t值a | P值a | t值b | P值b | t值c | P值c | t值d | P值d | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
左侧 | 右侧 | 左侧 | 右侧 | ||||||||||
股外侧肌/Q | 0.35±0.05 | 0.39±0.05 | 0.39±0.08 | 0.38±0.07 | 3.084 | 0.006 | 0.120 | 0.906 | 2.805 | 0.011 | -0.906 | 0.376 | |
股直肌/Q | 0.30±0.04 | 0.28±0.04 | 0.29±0.04 | 0.30±0.06 | -1.153 | 0.263 | -0.824 | 0.420 | -0.896 | 0.381 | 1.570 | 0.133 | |
股内侧肌/Q | 0.35±0.07 | 0.32±0.05 | 0.32±0.09 | 0.31±0.09 | -1.939 | 0.067 | 0.366 | 0.719 | -2.200 | 0.040 | -0.570 | 0.575 | |
股二头肌/H | 0.50±0.07 | 0.47±0.09 | 0.47±0.09 | 0.49±0.10 | -1.332 | 0.199 | -0.898 | 0.381 | -1.461 | 0.160 | 1.752 | 0.096 | |
半腱肌/H | 0.50±0.07 | 0.53±0.09 | 0.53±0.09 | 0.51±0.10 | 1.332 | 0.199 | 0.898 | 0.381 | 1.461 | 0.160 | -1.752 | 0.096 | |
H/Q | 0.58±0.16 | 0.54±0.13 | 1.21±0.38 | 1.26±0.46 | -1.214 | 0.240 | -0.482 | 0.635 | 8.185 | < 0.001 | 8.437 | < 0.001 | |
M/L | 1.03±0.23 | 0.98±0.27 | 1.05±0.28 | 1.01±0.33 | -0.835 | 0.414 | 0.458 | 0.652 | 0.376 | 0.711 | 0.851 | 0.406 |
"
肌肉 | 启动阶段 | 跟随阶段 | t值a | P值a | t值b | P值b | t值c | P值c | t值d | P值d | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
左侧 | 右侧 | 左侧 | 右侧 | ||||||||||
股外侧肌 | 20.76±6.31 | 20.97±5.02 | 29.20±7.91 | 27.72±6.91 | 0.178 | 0.861 | 0.710 | 0.486 | 5.832 | < 0.001 | 4.133 | 0.001 | |
股直肌 | 20.91±6.01 | 24.51±10.54 | 22.07±4.52 | 22.69±7.17 | 1.807 | 0.087 | -0.389 | 0.701 | 0.901 | 0.379 | -0.835 | 0.414 | |
股内侧肌 | 23.68±11.74 | 21.17±9.36 | 29.04±8.06 | 27.60±12.07 | -2.103 | 0.049 | 0.502 | 0.621 | 2.345 | 0.030 | 3.898 | 0.001 | |
股二头肌 | 19.05±7.66 | 18.26±6.49 | 27.77±8.23 | 27.16±10.98 | -0.375 | 0.712 | 0.284 | 0.779 | 5.278 | < 0.001 | 4.756 | < 0.001 | |
半腱肌 | 21.10±9.94 | 20.69±7.45 | 33.26±14.00 | 28.92±8.32 | -0.193 | 0.849 | 1.419 | 0.172 | 4.772 | < 0.001 | 6.659 | < 0.001 |
"
肌肉 | 启动阶段 | 跟随阶段 | t值a | P值a | t值b | P值b | t值c | P值c | t值d | P值d | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
左侧 | 右侧 | 左侧 | 右侧 | ||||||||||
股外侧肌/Q | 0.33±0.06 | 0.33±0.06 | 0.36±0.05 | 0.36±0.06 | 0.008 | 0.994 | 0.105 | 0.917 | 2.891 | 0.009 | 3.864 | 0.001 | |
股直肌/Q | 0.33±0.05 | 0.36±0.07 | 0.28±0.05 | 0.29±0.06 | 1.839 | 0.082 | -0.958 | 0.350 | -4.341 | < 0.001 | -5.075 | < 0.001 | |
股内侧肌/Q | 0.35±0.09 | 0.32±0.08 | 0.36±0.07 | 0.35±0.08 | -1.999 | 0.060 | 0.658 | 0.519 | 0.673 | 0.509 | 2.576 | 0.019 | |
股二头肌/H | 0.48±0.07 | 0.47±0.10 | 0.47±0.06 | 0.48±0.10 | -0.148 | 0.884 | -0.241 | 0.812 | -0.424 | 0.676 | 0.341 | 0.737 | |
半腱肌/H | 0.52±0.07 | 0.53±0.10 | 0.53±0.06 | 0.52±0.10 | 0.148 | 0.884 | 0.241 | 0.812 | 0.424 | 0.676 | -0.341 | 0.737 | |
H/Q | 0.64±0.25 | 0.63±0.26 | 0.75±0.23 | 0.73±0.18 | -0.118 | 0.907 | 0.239 | 0.814 | 2.988 | 0.008 | 2.405 | 0.027 | |
M/L | 1.14±0.25 | 1.09±0.33 | 1.08±0.19 | 1.07±0.33 | -0.758 | 0.458 | 0.026 | 0.980 | -1.356 | 0.191 | -0.395 | 0.698 |
[1] |
SLIEPEN M, MAURICIO E, LIPPERTS M, et al. Objective assessment of physical activity and sedentary behaviour in knee osteoarthritis patients: beyond daily steps and total sedentary time[J]. BMC Musculoskelet Disord, 2018, 19(1): 64.
doi: 10.1186/s12891-018-1980-3 |
[2] |
CLYNES M A, JAMESON K A, EDWARDS M H, et al. Impact of osteoarthritis on activities of daily living: Does joint site matter?[J]. Aging Clin Exp Res, 2019, 31(8): 1049-1056.
doi: 10.1007/s40520-019-01163-0 pmid: 30903599 |
[3] |
TANG X, WANG S, ZHAN S, et al. The prevalence of symptomatic knee osteoarthritis in China: results from the China Health and Retirement Longitudinal Study[J]. Arthritis Rheumatol, 2016, 68(3): 648-653.
doi: 10.1002/art.39465 |
[4] |
PRIETO-ALHAMBRA D, JUDGE A, JAVAID M K, et al. Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: influences of age, gender and osteoarthritis affecting other joints[J]. Ann Rheum Dis, 2014, 73(9): 1659-1664.
doi: 10.1136/annrheumdis-2013-203355 |
[5] |
LUDER G, SCHMID S, STETTLER M, et al. Stair climbing: an insight and comparison between women with and without joint hypermobility: a descriptive study[J]. J Electromyogr Kinesiol, 2015, 25(1): 161-167.
doi: 10.1016/j.jelekin.2014.07.005 |
[6] |
PARK S K, KOBSAR D, FERBER R. Relationship between lower limb muscle strength, self-reported pain and function, and frontal plane gait kinematics in knee osteoarthritis[J]. Clin Biomech, 2016, 38: 68-74.
doi: 10.1016/j.clinbiomech.2016.08.009 |
[7] |
SEGAL N A, GLASS N A. Is quadriceps muscle weakness a risk factor for incident or progressive knee osteoarthritis?[J]. Physician Sportsmed, 2011, 39(4): 44-50.
doi: 10.3810/psm.2011.11.1938 pmid: 22293767 |
[8] | 江迪锦, 廖志平, 李建华. 脑卒中患者坐站起立试验下大腿肌群表面肌电图信号特征研究[J]. 全科医学临床与教育, 2020, 18(8): 690-693. |
JIANG D J, LIAO Z P, LI J H. The surface electromyography characteristics in patients with stroke under standing up test[J]. Clin Educ Gener Prac, 2020, 18(8): 690-693. | |
[9] | TABORRI J, PALERMO E, DEL PRETE Z, et al. On the reliability and repeatability of surface electromyography factorization by muscle synergies in daily life activities[J]. Appl Bionics Biomech, 2018, 2018: 5852307. |
[10] |
HERMENS H J, FRERIKS B, DISSELHORST-KLUG C, et al. Development of recommendations for sEMG sensors and sensor placement procedures[J]. J Electromyogr Kinesiol, 2000, 10(5): 361-374.
doi: 10.1016/S1050-6411(00)00027-4 |
[11] | 王亚薇, 杨阳, 李耀民. 表面肌电图在步态分析中的应用[J]. 中国中西医结合外科杂志, 2021, 27(3): 538-541. |
WANG Y W, YANG Y, LI Y M. Application of surface electromyography in gait analysis[J]. Chin J Surg Integ Tradit West Med, 2021, 27(3): 538-541. | |
[12] |
CHANDRAN V D, CALALO J A, DIXON P C, et al. Knee muscle co-contractions are greater in old compared to young adults during walking and stair use[J]. Gait Posture, 2019, 73: 315-322.
doi: S0966-6362(19)30456-4 pmid: 31419759 |
[13] |
RUTHERFORD D, BAKER M. Lateral to medial hamstring activation ratio: individuals with medial compartment knee osteoarthritis compared to asymptomatic controls during gait[J]. Gait Posture, 2019, 70: 95-97.
doi: S0966-6362(18)31733-8 pmid: 30831546 |
[14] |
ZACHAZEWSKI J E, RILEY P O, KREBS D E. Biomechanical analysis of body mass transfer during stair ascent and descent of healthy subjects[J]. J Rehabil Res Dev, 1993, 30(4): 412-422.
pmid: 8158557 |
[15] |
HARPER N G, WILKEN J M, NEPTUNE R R. Muscle function and coordination of stair ascent[J]. J Biomech Eng, 2018, 140(1). doi: 10.1115/1.4037791.
doi: 10.1115/1.4037791 |
[16] | TEH K C, AZIZ A R. Heart rate, oxygen uptake, and energy cost of ascending and descending the stairs[J]. Med Sci Sports Exerc, 2002, 34(4): 695-699. |
[17] |
COSTIGAN P A, DELUZIO K J, WYSS U P. Knee and hip kinetics during normal stair climbing[J]. Gait Posture, 2002, 16(1): 31-37.
doi: 10.1016/s0966-6362(01)00201-6 pmid: 12127184 |
[18] | 窦树斐. 楼梯行走下肢生物力学特性研究[D]. 天津: 天津科技大学, 2016. |
DOU S F. Biomechanics characteristic research of human lower limb during walking on stairs[D]. Tianjin: Tianjin University of Science and Technology, 2016. | |
[19] |
卢惠苹, 陈瑞华, 张高飞, 等. 半月板损伤患者膝周肌肉的表面肌电图分析[J]. 中国康复理论与实践, 2019, 25(5): 586-589.
doi: 10.3969/j.issn.1006-9771.2019.05.016 |
LU H P, CHEN R H, ZHANG G F, et al. Disorder of muscles around knee with meniscus injury: study with surface electromyography[J]. Chin J Rehabil Theory Pract, 2019, 25(5): 586-589. | |
[20] |
CROCE R V, MILLER J P. The effect of movement velocity and movement pattern on the reciprocal co-activation of the hamstrings[J]. Electromyogr Clin Neurophysiol, 2003, 43(8): 451-458.
pmid: 14717025 |
[21] |
陈一, 施海涛, 毛岭. 脑卒中患者步态周期各时相中下肢肌肉的表面肌电特点[J]. 中国康复理论与实践, 2019, 25(8): 956-961.
doi: 10.3969/j.issn.1006-9771.2019.08.012 |
CHEN Y, SHI H T, MAO L. Surface electromyographic features of lower limb muscles during different phases of gait cycle in stroke patients[J]. Chin J Rehabil Theory Pract, 2019, 25(8): 956-961. | |
[22] |
MEIRELES S, REEVES N D, JONES R K, et al. Patients with medial knee osteoarthritis reduce medial knee contact forces by altering trunk kinematics, progression speed, and stepping strategy during stair ascent and descent: a pilot study[J]. J Appl Biomech, 2019, 35(4): 280-289.
doi: 10.1123/jab.2017-0159 pmid: 31141436 |
[23] |
SINSURIN K, VALLDECABRES R, RICHARDS J. An exploration of the differences in hip strength, gluteus medius activity, and trunk, pelvis, and lower-limb biomechanics during different functional tasks[J]. Int Biomech, 2020, 7(1): 35-43.
doi: 10.1080/23335432.2020.1728381 |
[24] | 张英媛, 王国栋, 陆阿明. 下肢优势侧评定方法的比较研究[J]. 北京体育大学学报, 2014, 37(10): 83-88. |
ZHANG Y Y, WANG G D, LU A M. Comparative study of assessment methods of determining dominant lower limb[J]. J Beijing Sport Univ, 2014, 37(10): 83-88. | |
[25] |
PROTOPAPADAKI A, DRECHSLER W I, CRAMP M C, et al. Hip, knee, ankle kinematics and kinetics during stair ascent and descent in healthy young individuals[J]. Clin Biomech, 2007, 22(2): 203-210.
doi: 10.1016/j.clinbiomech.2006.09.010 pmid: 17126461 |
[26] |
LIN Y C, FOK L A, SCHACHE A G, et al. Muscle coordination of support, progression and balance during stair ambulation[J]. J Biomech, 2015, 48(2): 340-347.
doi: 10.1016/j.jbiomech.2014.11.019 |
[27] |
GERBRANDS T A, PISTERS M F, THEEVEN P J R, et al. Lateral trunk lean and medializing the knee as gait strategies for knee osteoarthritis[J]. Gait Posture, 2017, 51: 247-253.
doi: S0966-6362(16)30642-7 pmid: 27838568 |
[28] |
DUNPHY C, CASEY S, LOMOND A, et al. Contralateral pelvic drop during gait increases knee adduction moments of asymptomatic individuals[J]. Hum Mov Sci, 2016, 49: 27-35.
doi: 10.1016/j.humov.2016.05.008 |
[29] | 张高飞. 表面肌电图在膝关节损伤中的应用现状[J]. 癫痫与神经电生理学杂志, 2017, 26(4): 245-248. |
ZHANG G F. Application status of surface electromyography in knee joint injury[J]. J Epileptol Electroneurophysiol, 2017, 26(4): 245-248. | |
[30] |
WINBY C R, GERUS P, KIRK T B, et al. Correlation between EMG-based co-activation measures and medial and lateral compartment loads of the knee during gait[J]. Clin Biomech, 2013, 28(9-10): 1014-1019.
doi: 10.1016/j.clinbiomech.2013.09.006 |
[31] |
PATSIKA G, KELLIS E, KOFOTOLIS N, et al. Synergetic and antagonist muscle strength and activity in women with knee osteoarthritis[J]. J Geriatr Phys Ther, 2014, 37(1): 17-23.
doi: 10.1519/JPT.0b013e31828fccc1 pmid: 23635991 |
[32] |
MILLS K, HUNT M A, LEIGH R, et al. A systematic review and meta-analysis of lower limb neuromuscular alterations associated with knee osteoarthritis during level walking[J]. Clin Biomech, 2013, 28(7): 713-724.
doi: 10.1016/j.clinbiomech.2013.07.008 |
[33] |
HEIDEN T L, LLOYD D G, ACKLAND T R. Knee joint kinematics, kinetics and muscle co-contraction in knee osteoarthritis patient gait[J]. Clin Biomech, 2009, 24(10): 833-841.
doi: 10.1016/j.clinbiomech.2009.08.005 |
[34] |
SCHMITT L C, RUDOLPH K S. Influences on knee movement strategies during walking in persons with medial knee osteoarthritis[J]. Arthritis Rheum, 2007, 57(6): 1018-1026.
doi: 10.1002/(ISSN)1529-0131 |
[35] |
KELLIS E, SAHINIS C, BALTZOPOULOS V. Is hamstrings-to-quadriceps torque ratio useful for predicting anterior cruciate ligament and hamstring injuries? A systematic and critical review[J]. J Sport Health Sci, 2023, 12(3): 343-358.
doi: 10.1016/j.jshs.2022.01.002 |
[36] |
JEONG J, CHOI D H, SHIN C S. Core strength training can alter neuromuscular and biomechanical risk factors for anterior cruciate ligament injury[J]. Am J Sports Med, 2021, 49(1): 183-192.
doi: 10.1177/0363546520972990 pmid: 33381989 |
[37] |
KREUZ P C, PETERSON L, VAN DER WERF-GROHMANN N, et al. Clinical and electromyographic results of proximal and distal realignment procedures in young patients with recurrent patellar dislocations[J]. Am J Sport Med, 2013, 41(7): 1621-1628.
doi: 10.1177/0363546513488869 |
[38] | 黎发根, 瓮长水, 王娜, 等. 膝关节内侧移位者髋部肌肉力量及表面肌电特征研究[J]. 中国康复医学杂志, 2016, 31(9): 969-972. |
LI F G, WENG C S, WANG N, et al. A study of strength and sEMG of hip muscles in people with medial knee displacement[J]. Chin J Rehabil Med, 2016, 31(9): 969-972. | |
[39] | 吕汐妍, 任超展, 寄婧, 等. 等速离心训练联合股内侧肌电刺激治疗膝关节骨性关节炎临床疗效研究[J]. 中国康复医学杂志, 2021, 36(11): 1433-1435. |
[40] | 杨晨, 田向东, 管垒, 等. BZY-A型低频治疗仪选择性刺激股内侧肌治疗髌骨软化症[J]. 中国矫形外科杂志, 2018, 26(7): 615-618. |
YANG C, TIAN X D, GUAN L, et al. BZY-A low-frequency electrostimulator for selective stimulation of vastus medialis in treatment of patellar chondromalacia[J]. Orthop J Chin, 2018, 26(7): 615-618. | |
[41] |
SMITH S L, WOODBURN J, STEULTJENS M P M. Sex- and osteoarthritis-related differences in muscle co-activation during weight-bearing tasks[J]. Gait Posture, 2020, 79: 117-125.
doi: S0966-6362(20)30139-9 pmid: 32402893 |
[42] |
HORTOBÁGYI T, WESTERKAMP L, BEAM S, et al. Altered hamstring-quadriceps muscle balance in patients with knee osteoarthritis[J]. Clin Biomech, 2005, 20(1): 97-104.
pmid: 15567543 |
[43] | 陈博, 林紫玲, 刘本科, 等. 膝骨性关节炎患者登梯时下肢肌肉活动和膝关节负荷的分析[J]. 现代生物医学进展, 2020, 20(9): 1689-1694, 1792. |
CHEN B, LIN Z L, LIU B K, et al. Analysis of lower limb muscle activity and knee joint loading for stair climbing in knee osteoarthritis patients[J]. Prog Modern Biomed, 2020, 20(9): 1689-1694, 1792. |
[1] | MA Shengnan, KE Jingyue, DONG Hongming, LI Jianping, ZHANG Honghao, LIU Chao, SHEN Shuang, LI Guqiang. Effect of core stability training on dynamic balance and surface electromyography after anterior cruciate ligament reconstruction [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 882-889. |
[2] | CUI Yao, CONG Fang, HUANG Fubiao, ZENG Ming, YAN Ruxiu. Brain and muscle activation under mirror neuron-based training strategies: a near-infrared spectroscopy and surface electromyography study [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 782-790. |
[3] | LI Junyi, CHEN Zehua, WU Zugui, WANG Yi, LI Congcong, WANG Shuai, CHEN Weijian, YE Zixuan, SHEN Xingxing, XIANG Ruian, LIU Wengang, XU Xuemeng. Reliability on evaluation of quadriceps femoris muscle quality by ultrasonic echo intensity in patients with knee osteoarthritis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(6): 738-744. |
[4] | ZHU Xu,LIU Jing,DONG Zeping,QIU Dawei. Gesture action intent recognition based on surface electromyography: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(9): 1032-1038. |
[5] | TIAN Yaxing,HONG Yongfeng,KAN Xiuli,SHEN Xianshan,MAO Jing,JIANG Yan,HE Ziyan,WU Yu,HU Wei,SUN Xiaoning,HU Shunyin. Effects of manual digitorum sensory stimulation on spasticity of fingers for stroke patients: a surface electromyography study [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(5): 515-519. |
[6] | ZHONG Jiaman,HUANG Jingjie,LIU Fuyifei,ZHAO Shiting,XU Wenxia,YANG Junxing. Isokinetic muscle strength of knee for patients with chondromalacia patellae [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(4): 379-383. |
[7] | ZHOU Yue,LIU Xu,SUN Yuemei,HU Chunying,ZHU Yuetong,LI Bo. Effect of Flexi-bar training in different exercise patterns on trunk stability muscles [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(4): 384-388. |
[8] | HUANG Zhaoxin,ZHANG Yi,CUI Chenxi,ZHU Xiaojing,XIAO Xiaofei. Biomechanical analysis of in-toeing gait in young females based on ICF [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(12): 1459-1465. |
[9] | GUO Jingwei,GE Ruidong,BAI Shuo,WANG Jiaxi,WU Shuai,WANG Le. Characteristics of surface electromyography of muscles in stroke patients with lower limb spasticity under isokinetic passive movement [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(12): 1473-1477. |
[10] | ZHI Wenqian,HUANG Qiang,LI Qiang,LI Yanchao,WANG Yuzhang,YANG Ming,LIU Xiaohua. Application of surface electromyography in motor function evaluation of patients after elbow fracture surgery [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(12): 1478-1483. |
[11] | LI Jingyue,ZHANG Tong,WANG Ya'nan,WANG Chen. Application of three-dimensional dynamic capture system and surface electromyography in upper extremity motor evaluation for stroke patients with hemiplegia [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(11): 1241-1246. |
[12] | ZHANG Jing,GUO Feng. Neuromodulation for Flexion of Fingers under Initiative Inadequate of Flexor Digitorum [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2021, 27(9): 1104-1109. |
[13] | ZHANG Mei-ying,ZHAO Lei,LI Hui,WANG Ying-ying,DAI Shi-you. Effect of Strength Training of Hip Muscles on Functional Ankle Instability: Evaluated with Surface Electromyography [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2021, 27(8): 936-942. |
[14] | ZHANG Si-yuan,ZHANG Pei-zhen,ZHOU Xing-long. Effects of Different Interventions on Activation Mode of Trapezius Muscle during Exercise [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2021, 27(8): 951-961. |
[15] | Meng-lin CAO,Yu-hao CHEN,Jue WANG,Tian LIU. Advance in Human Motion Intention Recognition Based on Surface Electromyography (review) [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2021, 27(5): 595-603. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|