《Chinese Journal of Rehabilitation Theory and Practice》 ›› 2023, Vol. 29 ›› Issue (2): 193-204.doi: 10.3969/j.issn.1006-9771.2023.02.008
Previous Articles Next Articles
CHENG Siman1, XIN Rong1, ZHAO Yan2, LIU Qingyu1, XIE Jiale1, LIU Peng2(), WANG Pu1()
Received:
2022-10-11
Revised:
2023-01-06
Published:
2023-02-25
Online:
2023-03-16
Contact:
LIU Peng, WANG Pu
E-mail:liupeng2@mail.sysu.edu.cn;wangpu@sysush.com
CLC Number:
CHENG Siman, XIN Rong, ZHAO Yan, LIU Qingyu, XIE Jiale, LIU Peng, WANG Pu. Functional magnetic resonance imaging study about repetitive transcranial magnetic stimulation for dysfunction after stroke: a scoping review[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(2): 193-204.
"
纳入文献 | 国家 | 受试者 | n | 干预措施 | 结局指标 | fMRI显示结果 | 其他结局 |
---|---|---|---|---|---|---|---|
Tosun等[ | 土耳其 | 偏瘫患者 | 9/7/9 | 假刺激+常规康复治疗/rTMS+NMES+常规康复治疗/常规康复治疗 | FMA、BI、fMRI | rTMS干预后,在患手活动过程中患侧M1区激活增加明显,健侧M1区未见变化 | rTMS组FMA评分显著高于假刺激组,运动功能明显改善 |
Gottlieb等[ | 德国 | 偏瘫患者 | 14/14 | 假刺激+常规康复治疗/rTMS+常规康复治疗 | FMA、fMRI | rTMS干预后左角回连接性增加 | rTMS组FMA评分显著高于假刺激组,运动功能明显改善 |
Guo等[ | 中国 | 偏瘫患者 | 20/20/20 | 假刺激+常规康复治疗/1 Hz rTMS+常规康复治疗/10 Hz rTMS+常规康复治疗 | FMA、BI、fMRI | 低、高频rTMS组同侧M1和SMA与对侧PMA之间,对侧M1和对侧SMA之间,对侧SMA和同侧SMA之间的FC显著变化 | rTMS组FMA评分、BI分数显著高于假刺激组,运动功能明显改善 |
Lee等[ | 中国 | 卒中后失语患者 | 13/13 | 假刺激+常规康复治疗/rTMS+常规康复治疗 | CCAT、fMRI | rTMS组右颞上回、右前额叶背外侧回、岛叶皮质和尾状核的fALFF显著增加,右侧丘脑fALFF减少 | rTMS组CCAT分数增高明显,言语功能改善明显 |
Bai等[ | 中国 | 卒中后失语患者 | 30/30 | 假刺激+言语训练/rTMS+言语训练 | WAB、简式Token试验、fMRI | rTMS组右半球额叶多个脑区、右颞叶和右顶叶等脑区的fALFF值下降,左顶叶、左角回、左额叶、双侧边缘叶激活增加 | rTMS干预后WAB、简式Token分数显著提高,语言能力改善 |
Szaflarski等[ | 美国 | 卒中后失语患者 | 9/9/9/9 | 3周假刺激/2周假刺激+1周真刺激/1周假刺激+2周真刺激/3周真刺激 | WAB、BNT、SFT、COWAT、fMRI | rTMS组两侧半球都显示出更大的fMRI激活,左右侧IFG之间和双侧大脑半球脑区的连接性发生改变 | rTMS干预后WAB、BNT分数改善明显,语言功能改善 |
Allendorfer等[ | 美国 | 卒中后失语患者 | 9/9/9/9 | 3周假刺激/2周假刺激+1周真刺激/1周假刺激+2周真刺激/3周真刺激 | BNT、fMRI | rTMS组左侧视觉皮质包括左腹侧视觉流激活增加,双侧SMA激活减少,右前额叶和前岛叶区激活减少 | rTMS干预后WAB、BNT分数改善明显,语言能力改善 |
陈栩铤等[ | 中国 | 卒中后吞咽困难患者 | 10/10 | 假刺激+常规康复治疗/rTMS+常规康复治疗 | 用进食评估问卷调查工具-10、吞咽功能性交流测试、改良曼恩吞咽能力评估量表、fMRI | rTMS组大脑顶叶、顶上小叶、BA7、BA40激活范围较组内治疗前和对照组治疗后均明显增大 | 治疗后,两组用进食评估问卷调查工具-10、吞咽功能性交流测试及改良曼恩吞咽能力评估评分均优于治疗前;rTMS组评分均优于假刺激组 |
焦勇钢等[ | 中国 | 卒中后吞咽困难患者 | 20/20 | 假刺激+常规康复治疗/rTMS+常规康复治疗 | 临床吞咽困难量表、吞咽困难预后和严重程度量表、fMRI | 高频rTMS组ALFF增强的脑区包括双侧尾状核、双侧豆状核和双侧额上回 | rTMS 组吞咽功能改善更明显 |
Yin等[ | 中国 | 卒中后认知损害患者 | 18/16 | 假刺激/rTMS | MoCA、RBMT、fMRI | rTMS组左内侧前额叶皮质ALFF增加以及右内侧前额叶皮质和右腹侧前扣带回FC增加 | rTMS组认知功能改善更明显 |
罗红等[ | 中国 | 卒中后认知损害患者 | 15/15 | 认知康复训练/rTMS+认知康复训练 | MoCA、MMSE、fMRI | rTMS组楔前叶、颞下回、额中回、IFG等FC增加,fALFF增高脑区主要有颞上回、IFG、海马旁回等,RoHo增高脑区主要有缘上回、楔前叶、扣带回等 | rTMS组认知功能改善情况明显优于对照组 |
Li等[ | 中国 | 卒中后认知损害患者 | 15/15 | 假刺激+认知训练/rTMS+认知康复训练 | MMSE、MoCA、fMRI | rTMS组颞上回、IFG和海马旁回fALFF值较高,颞中回、额中回和梭状回fALFF值较低。LDPFC与楔前叶、颞下回、额中下回和边缘回之间FC增加,与颞中回和丘脑之间的FC减少 | 两组认知均有改善,rTMS组较假刺激组改善明显 |
Li等[ | 中国 | 卒中后抑郁患者 | 16/16 | 假刺激+常规康复治疗/rTMS+常规康复治疗 | 汉密尔顿抑郁量表、fMRI | rTMS组ReHo 和 fALFF值较低的区域主要位于左半球。DMN内动态FC也产生显著变化 | rTMS组汉密尔顿抑郁量表评分显著减少,抑郁症状改善明显 |
Eshel等[ | 美国 | 抑郁患者 | 13/20 | 假刺激+常规康复治疗/rTMS+常规康复治疗 | 汉密尔顿抑郁量表、EEG、fMRI | rTMS组DLPFC全脑连接性增加,并且诱导负性DLPFC-杏仁核连接性 | rTMS干预后抑郁症状显著改善 |
"
纳入文献 | 频率 | 强度 | 序列 | 总脉冲 | 刺激部位 | 持续时间 | 假rTMS设置 |
---|---|---|---|---|---|---|---|
Tosun等[ | 1 Hz | 90% rMT | 未描述 | 每天1 200脉冲 | 健侧M1 | 每天1次,每周5 d,2周 | 旋转刺激线圈90°垂直于头皮 |
Gottlieb等[ | 1 Hz | 100% rMT | 未描述 | 每天1 200脉冲 | 健侧M1 | 每天1次,每周5 d,2周 | 旋转刺激线圈90°垂直于头皮 |
Guo等[ | 1 Hz/10 Hz | 90% rMT | 30 | 每天900脉冲/1 500脉冲 | 健侧M1/患侧M1 | 每天1次,每周5 d,1周 | 假线圈 |
Lee等[ | 1 Hz | 90% rMT | 未描述 | 未描述 | 患侧三角部 | 每天1次,每周5 d,2周 | 假线圈 |
Bai等[ | 1 Hz | 80% rMT | 100 | 每天1 000脉冲 | 右侧IFG | 每天1次,每周5 d,4周 | 旋转刺激线圈90°垂直于头皮 |
Szaflarski等[ | 50 Hz | 80% AMT | 未描述 | 每天600脉冲 | 左侧IFG | 每天1次,每周5 d,3周 | 未描述 |
Allendorfer等[ | 50 Hz | 80% AMT | 未描述 | 每天600脉冲 | 左侧IFG | 每天1次,每周5 d,3周 | 未描述 |
陈栩铤等[ | 5 Hz | 80% rMT | 未描述 | 每天1 000脉冲 | 健侧大脑半球舌骨上肌群皮质对应区 | 每天1次,每周6 d,2周 | 旋转刺激线圈90°垂直于头皮 |
焦勇钢等[ | 3 Hz | 80% rMT | 未描述 | 未描述 | 双侧咽部运动皮质 | 每天1次,每周5 d,2周 | 未描述 |
Yin等[ | 10 Hz | 80% rMT | 40 | 每天2 000脉冲 | 左侧DLPFC | 每天1次,每周5 d,4周 | 旋转刺激线圈90°垂直于头皮 |
罗红等[ | 5 Hz | 80%~120% MT | 未描述 | 每天1 050脉冲 | 左侧DLPFC | 每天1次,每周5 d,3周 | 未描述 |
Li等[ | 5 Hz | 100% MT | 50 | 每天2 000脉冲 | 左侧DLPFC | 每天1次,每周5 d,4周 | 旋转刺激线圈90°垂直于头皮 |
Li等[ | 5 Hz | 90% rMT | 50 | 每天2 000脉冲 | 左侧DLPFC | 每天1次,每周6 d,4周 | 旋转刺激线圈90°垂直于头皮 |
Eshel等[ | 10 Hz | 未描述 | 未描述 | 每天2 000脉冲 | 左侧DLPFC | 每天1次,每周5 d,4周 | 旋转刺激线圈90°垂直于头皮 |
"
纳入文献 | 条目1 | 条目2 | 条目3 | 条目4 | 条目5 | 条目6 | 条目7 | 条目8 | 条目9 | 条目10 | 条目11 | 总分 | 文献质量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tosun等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 9 | 极高 | |
Gottlieb等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 9 | 极高 | |
Guo等[ | √ | √ | √ | √ | √ | √ | √ | 6 | 高 | ||||
Lee等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 9 | 极高 | |
Bai等[ | √ | √ | √ | √ | √ | √ | √ | 6 | 高 | ||||
Szaflarski等[ | √ | √ | √ | √ | √ | √ | √ | √ | 7 | 高 | |||
Allendorfer等[ | √ | √ | √ | √ | √ | √ | √ | √ | 7 | 高 | |||
陈栩铤等[ | √ | √ | √ | √ | √ | √ | √ | 6 | 高 | ||||
焦勇钢等[ | √ | √ | √ | √ | √ | √ | √ | 6 | 高 | ||||
Yin等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 8 | 高 | ||
罗红等[ | √ | √ | √ | √ | √ | √ | √ | √ | 7 | 高 | |||
Li等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 9 | 极高 | |
Li等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 9 | 极高 | |
Eshel等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 8 | 高 |
[1] |
BERGMANN T O, KARABANOV A, HARTWIGSEN G, et al. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives[J]. Neuroimage, 2016, 140: 4-19.
doi: 10.1016/j.neuroimage.2016.02.012 pmid: 26883069 |
[2] |
NING L, MAKRIS N, CAMPRODON J A, et al. Limits and reproducibility of resting-state functional MRI definition of DLPFC targets for neuromodulation[J]. Brain Stimul, 2019, 12(1): 129-138.
doi: S1935-861X(18)30350-4 pmid: 30344110 |
[3] |
MARINI M, BANAJI M R, PASCUAL-LEONE A. Studying implicit social cognition with noninvasive brain stimulation[J]. Trends Cogn Sci, 2018, 22(11): 1050-1066.
doi: S1364-6613(18)30176-1 pmid: 30181079 |
[4] |
CHUNG S W, HILL A T, ROGASCH N C, et al. Use of theta-burst stimulation in changing excitability of motor cortex: a systematic review and meta-analysis[J]. Neurosci Biobehav Rev, 2016, 63: 43-64.
doi: 10.1016/j.neubiorev.2016.01.008 pmid: 26850210 |
[5] |
LEFAUCHEUR J P, ALEMAN A, BAEKEN C, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014-2018)[J]. Clin Neurophysiol, 2020, 131(2): 474-528.
doi: 10.1016/j.clinph.2019.11.002 |
[6] |
SANKARASUBRAMANIAN V, MACHADO A G, CONFORTO A B, et al. Inhibition versus facilitation of contralesional motor cortices in stroke: deriving a model to tailor brain stimulation[J]. Clin Neurophysiol, 2017, 128(6): 892-902.
doi: S1388-2457(17)30118-9 pmid: 28402865 |
[7] |
CRINION J T, LEFF A P. Recovery and treatment of aphasia after stroke: functional imaging studies[J]. Curr Opin Neurol, 2007, 20(6): 667-673.
pmid: 17992087 |
[8] | 魏莲, 李妮. 不同频率重复经颅磁刺激治疗脑干损伤致昏迷患者的促醒效果及安全性研究[J]. 实用心脑肺血管病杂志, 2020, 28(6): 79-84. |
WEI L, LI N. Wake-promoting effect and safety of different frequencies of repetitive transcranial magnetic stimulation in patients with coma caused by brainstem injury[J]. Pract J Cardiac Cereb Pneumal Vas Dis, 2020, 28(6): 79-84. | |
[9] |
SEBASTIANELLI L, VERSACE V, MARTIGNAGO S, et al. Low-frequency rTMS of the unaffected hemisphere in stroke patients: a systematic review[J]. Acta Neurol Scand, 2017, 136(6): 585-605.
doi: 10.1111/ane.12773 pmid: 28464421 |
[10] |
HEIKKINEN P H, PULVERMULLER F, MAKELA J P, et al. Combining rTMS with intensive language-action therapy in chronic aphasia: a randomized controlled trial[J]. Front Neurosci, 2018, 12: 1036.
doi: 10.3389/fnins.2018.01036 |
[11] |
BESTMANN S, SWAYNE O, BLANKENBURG F, et al. The role of contralesional dorsal premotor cortex after stroke as studied with concurrent TMS-fMRI[J]. J Neurosci, 2010, 30(36): 11926-11937.
doi: 10.1523/JNEUROSCI.5642-09.2010 pmid: 20826657 |
[12] |
BUCHBINDER B R. Functional magnetic resonance imaging[J]. Handb Clin Neurol, 2016, 135: 61-92.
doi: B978-0-444-53485-9.00004-0 pmid: 27432660 |
[13] |
SHAN X, QIU Y, PAN P, et al. Disrupted regional homogeneity in drug-naive patients with bipolar disorder[J]. Front Psychiatry, 2020, 11: 825.
doi: 10.3389/fpsyt.2020.00825 pmid: 32922322 |
[14] |
HAN X, LI H, WANG X, et al. Altered brain fraction amplitude of low frequency fluctuation at resting state in patients with early left and right bell's palsy: do they have differences?[J]. Front Neurosci, 2018, 12: 797.
doi: 10.3389/fnins.2018.00797 |
[15] |
COHEN J R. The behavioral and cognitive relevance of time-varying, dynamic changes in functional connectivity[J]. Neuroimage, 2018, 180(Pt B): 515-525.
doi: S1053-8119(17)30784-X pmid: 28942061 |
[16] |
ARKSEY H, O'MALLEY L. Scoping studies: towards a methodological framework[J]. Int J Soc Res Methodol, 2005, 8(1): 19-32.
doi: 10.1080/1364557032000119616 |
[17] | CHEN D, ZHANG R, ZHAO H, et al. A bibliometric analysis of the development of ICD-11 in medical informatics[J]. J Healthc Eng, 2019, 2019: 1649363. |
[18] | 曾宪涛, 包翠萍, 曹世义, 等. Meta分析系列之三:随机对照试验的质量评价工具[J]. 中国循证心血管医学杂志, 2012, 4(3): 183-185. |
ZENG X T, BAO C P, CAO S Y, et al. Chin J Evid Based Cardiovasc Med, 2012, 4(3): 183-185. | |
[19] |
VERHAGEN A P, DE VET H C, DE BIE R A, et al. The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus[J]. J Clin Epidemiol, 1998, 51(12): 1235-1241.
doi: 10.1016/s0895-4356(98)00131-0 pmid: 10086815 |
[20] |
TOSUN A, TURE S, ASKIN A, et al. Effects of low-frequency repetitive transcranial magnetic stimulation and neuromuscular electrical stimulation on upper extremity motor recovery in the early period after stroke: a preliminary study[J]. Top Stroke Rehabil, 2017, 24(5): 361-367.
doi: 10.1080/10749357.2017.1305644 pmid: 28327054 |
[21] |
GOTTLIEB A, BOLTZMANN M, SCHMIDT S B, et al. Treatment of upper limb spasticity with inhibitory repetitive transcranial magnetic stimulation: a randomized placebo-controlled trial[J]. NeuroRehabilitation, 2021, 49(3): 425-434.
doi: 10.3233/NRE-210088 |
[22] | GUO Z, JIN Y, BAI X, et al. Distinction of high- and low-frequency repetitive transcranial magnetic stimulation on the functional reorganization of the motor network in stroke patients[J]. Neural Plast, 2021, 2021: 8873221. |
[23] |
LEE I T, HUANG C C, HSU P C, et al. Resting-state network changes following transcranial magnetic stimulation in patients with aphasia: a randomized controlled study[J]. Neuromodulation, 2022, 25(4): 528-537.
doi: 10.1016/j.neurom.2021.10.004 |
[24] |
BAI G, JIANG L, HUAN S, et al. Study on low-frequency repetitive transcranial magnetic stimulation improves speech function and mechanism in patients with non-fluent aphasia after stroke[J]. Front Aging Neurosci, 2022, 14: 883542.
doi: 10.3389/fnagi.2022.883542 |
[25] | SZAFLARSKI J P, NENERT R, ALLENDORFER J B, et al. Intermittent theta burst stimulation (iTBS) for treatment of chronic post-stroke aphasia: results of a pilot randomized, double-blind, sham-controlled trial[J]. Med Sci Monit, 2021, 27: e931468. |
[26] | ALLENDORFER J B, NENERT R, VANNEST J, et al. A pilot randomized controlled trial of intermittent theta burst stimulation as stand-alone treatment for post-stroke aphasia: effects on language and verbal functional magnetic resonance imaging (fMRI)[J]. Med Sci Monit, 2021, 27: e934818. |
[27] | 陈栩铤, 顾旭东, 姚云海, 等. 单侧高频重复经颅磁刺激对脑卒中吞咽障碍及功能性磁共振成像的影响[J]. 中华物理医学与康复杂志, 2021, 43(12): 1105-1109. |
CHEN X T, GU X D, YAO Y H, et al. Transcranial magnetic stimulation can improve swallowing after a stroke[J]. Chin J Phys Med Rehabil, 2021, 43(12): 1105-1109. | |
[28] | 焦勇钢, 戴颖仪, 胡芳芳, 等. 重复经颅磁刺激对急性脑梗死后吞咽障碍的影响及与其功能磁共振成像变化的关系[J]. 实用医学杂志, 2020, 36(3): 385-389, 394. |
JIAO Y G, DAI Y Y, HU F F, et al. Effect of repetitive transcranial magnetic stimulation on dysphagia after acute cerebral infarction and its relationship with fMRI changes[J]. J Pract Med, 2020, 36(3): 385-389, 394. | |
[29] |
YIN M, LIU Y, ZHANG L, et al. Effects of rTMS treatment on cognitive impairment and resting-state brain activity in stroke patients: a randomized clinical trial[J]. Front Neural Circuits, 2020, 14: 563777.
doi: 10.3389/fncir.2020.563777 |
[30] | 罗红, 余茜. 基于静息态fMRI技术观察高频重复经颅磁刺激对出血性脑卒中认知功能的影响[J]. 中华物理医学与康复杂志, 2019, 41(4): 279-282. |
LUO H, YU Q. Chin J Phys Med Rehabil, 2019, 41(4): 279-282. | |
[31] |
LI Y, LUO H, YU Q, et al. Cerebral functional manipulation of repetitive transcranial magnetic stimulation in cognitive impairment patients after stroke: an fMRI study[J]. Front Neurol, 2020, 11: 977.
doi: 10.3389/fneur.2020.00977 pmid: 33013646 |
[32] |
LI Y, LI K, FENG R, et al. Mechanisms of repetitive transcranial magnetic stimulation on post-stroke depression: a resting-state functional magnetic resonance imaging study[J]. Brain Topogr, 2022, 35(3): 363-374.
doi: 10.1007/s10548-022-00894-0 pmid: 35286526 |
[33] |
ESHEL N, KELLER C J, WU W, et al. Global connectivity and local excitability changes underlie antidepressant effects of repetitive transcranial magnetic stimulation[J]. Neuropsychopharmacology, 2020, 45(6): 1018-1025.
doi: 10.1038/s41386-020-0633-z pmid: 32053828 |
[34] |
DU J, YANG F, HU J, et al. Effects of high- and low-frequency repetitive transcranial magnetic stimulation on motor recovery in early stroke patients: evidence from a randomized controlled trial with clinical, neurophysiological and functional imaging assessments[J]. Neuroimage Clin, 2019, 21: 101620.
doi: 10.1016/j.nicl.2018.101620 |
[35] |
GREFKES C, WARD N S. Cortical reorganization after stroke: how much and how functional?[J]. Neuroscientist, 2014, 20(1): 56-70.
doi: 10.1177/1073858413491147 pmid: 23774218 |
[36] |
JUAN D, YAO W, LI J, et al. Motor network reorganization after repetitive transcranial magnetic stimulation in early stroke patients: a resting state fMRI study[J]. Neurorehabil Neural Repair, 2022, 36(1): 61-68.
doi: 10.1177/15459683211054184 |
[37] |
JOHANSEN-BERG H, RUSHWORTH M F, BOGDANOVIC M D, et al. The role of ipsilateral premotor cortex in hand movement after stroke[J]. Proc Natl Acad Sci U S A, 2002, 99(22): 14518-14523.
doi: 10.1073/pnas.222536799 |
[38] |
EATON K P, SZAFLARSKI J P, ALTAYE M, et al. Reliability of fMRI for studies of language in post-stroke aphasia subjects[J]. Neuroimage, 2008, 41(2): 311-322.
doi: 10.1016/j.neuroimage.2008.02.033 pmid: 18411061 |
[39] |
NAESER M A, MARTIN P I, LUNDGREN K, et al. Improved language in a chronic nonfluent aphasia patient after treatment with CPAP and TMS[J]. Cogn Behav Neurol, 2010, 23(1): 29-38.
doi: 10.1097/WNN.0b013e3181bf2d20 pmid: 20299861 |
[40] |
SAUR D, LANGE R, BAUMGAERTNER A, et al. Dynamics of language reorganization after stroke[J]. Brain, 2006, 129(Pt 6): 1371-1384.
doi: 10.1093/brain/awl090 pmid: 16638796 |
[41] |
ZHANG J, ZHONG D, XIAO X, et al. Effects of repetitive transcranial magnetic stimulation (rTMS) on aphasia in stroke patients: a systematic review and meta-analysis[J]. Clin Rehabil, 2021, 35(8): 1103-1116.
doi: 10.1177/0269215521999554 |
[42] |
NAESER M A, HO M D, MARTIN P I, et al. Increased functional connectivity within intrinsic neural networks in chronic stroke following treatment with red/near-infrared transcranial photobiomodulation: case series with improved naming in aphasia[J]. Photobiomodul Photomed Laser Surg, 2020, 38(2): 115-131.
doi: 10.1089/photob.2019.4630 pmid: 31621498 |
[43] |
PISEGNA J M, KANEOKA A, PEARSON W J, et al. Effects of non-invasive brain stimulation on post-stroke dysphagia: a systematic review and meta-analysis of randomized controlled trials[J]. Clin Neurophysiol, 2016, 127(1): 956-968.
doi: S1388-2457(15)00309-0 pmid: 26070517 |
[44] |
TOOGOOD J A, SMITH R C, STEVENS T K, et al. Swallowing preparation and execution: insights from a delayed-response functional magnetic resonance imaging (fMRI) study[J]. Dysphagia, 2017, 32(4): 526-541.
doi: 10.1007/s00455-017-9794-2 pmid: 28361202 |
[45] |
FLOWERS H L, ALHARBI M A, MIKULIS D, et al. MRI-based neuroanatomical predictors of dysphagia, dysarthria, and aphasia in patients with first acute ischemic stroke[J]. Cerebrovasc Dis Extra, 2017, 7(1): 21-34.
doi: 10.1159/000457810 |
[46] |
FLOWERS H L, ALHARBI M A, MIKULIS D, et al. MRI-based neuroanatomical predictors of dysphagia, dysarthria, and aphasia in patients with first acute ischemic stroke[J]. Cerebrovasc Dis Extra, 2017, 7(1): 21-34.
doi: 10.1159/000457810 |
[47] | 蔡倩, 杨玺, 孙武东, 等. 双侧高频重复性经颅磁刺激治疗脑卒中后吞咽障碍的疗效观察[J]. 中华物理医学与康复杂志, 2019, 41(12): 932-933. |
CAI Q, YANG X, SUN W D, et al. Chin J Phys Med Rehabil, 2019, 41(12): 932-933. | |
[48] |
LIU J, QIN W, WANG H, et al. Altered spontaneous activity in the default-mode network and cognitive decline in chronic subcortical stroke[J]. J Neurol Sci, 2014, 347(1-2): 193-198.
doi: 10.1016/j.jns.2014.08.049 pmid: 25304057 |
[49] |
CAO W, CAO X, HOU C, et al. Effects of cognitive training on resting-state functional connectivity of default mode, salience, and central executive networks[J]. Front Aging Neurosci, 2016, 8: 70.
doi: 10.3389/fnagi.2016.00070 pmid: 27148042 |
[50] |
CHAI X J, WHITFIELD-GABRIELI S, SHINN A K, et al. Abnormal medial prefrontal cortex resting-state connectivity in bipolar disorder and schizophrenia[J]. Neuropsychopharmacology, 2011, 36(10): 2009-2017.
doi: 10.1038/npp.2011.88 pmid: 21654735 |
[51] |
FOX M D, SNYDER A Z, VINCENT J L, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks[J]. Proc Natl Acad Sci U S A, 2005, 102(27): 9673-9678.
doi: 10.1073/pnas.0504136102 |
[52] | TANG Y, CHEN A, ZHU S, et al. Repetitive transcranial magnetic stimulation for depression after basal ganglia ischaemic stroke: protocol for a multicentre randomised double-blind placebo-controlled trial[J]. BMJ Open, 2018, 8(2): e18011. |
[53] |
ZHANG P, WANG J, XU Q, et al. Altered functional connectivity in post-ischemic stroke depression: a resting-state functional magnetic resonance imaging study[J]. Eur J Radiol, 2018, 100: 156-165.
doi: S0720-048X(18)30003-2 pmid: 29373162 |
[54] |
GREICIUS M D, FLORES B H, MENON V, et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus[J]. Biol Psychiatry, 2007, 62(5): 429-437.
doi: 10.1016/j.biopsych.2006.09.020 |
[55] |
LASSALLE-LAGADEC S, SIBON I, DILHARREGUY B, et al. Subacute default mode network dysfunction in the prediction of post-stroke depression severity[J]. Radiology, 2012, 264(1): 218-224.
doi: 10.1148/radiol.12111718 |
[56] | 朱祖福, 刘冬柏, 张剑宇, 等. 卒中后抑郁患者的局部一致性降低:静息态功能磁共振成像研究[J]. 国际脑血管病杂志, 2012, 20(7): 501-503. |
ZHU Z F, LIU D B, ZHANG J Y, et al. Decreased regional homogeneity in patients with poststroke depression: a resting-state functional magnetic resonance imaging study[J]. Int J Cerebrovasc Dis, 2012, 20(7): 501-503. | |
[57] | 杨蓉蓉, 朴翔宇. 卒中后抑郁患者的脑区功能活动分析[J]. 河北医药, 2019, 41(19): 3007-3009. |
YANG R R, PU X Y. Analysis for the brain region activities in patients with post-stroke depression[J]. Hebei Med J, 2019, 41(19): 3007-3009. | |
[58] | 许毅, 李达, 谭立文, 等. 重复经颅磁刺激治疗专家共识[J]. 转化医学杂志, 2018, 7(1): 4-9. |
XU Y, LI D, TAN L W, et al. Chinese Experts Consensus on Repetitive Transcranial Magnetic Stimulation[J]. Transl Med J, 2018, 7(1): 4-9.
doi: 10.1186/1479-5876-7-4 |
|
[59] |
GREFKES C, FINK G R. Noninvasive brain stimulation after stroke: It is time for large randomized controlled trials![J]. Curr Opin Neurol, 2016, 29(6): 714-720.
pmid: 27648877 |
[60] |
GUGGISBERG A G, KOCH P J, HUMMEL F C, et al. Brain networks and their relevance for stroke rehabilitation[J]. Clin Neurophysiol, 2019, 130(7): 1098-1124.
doi: S1388-2457(19)30127-0 pmid: 31082786 |
[61] |
HENG H M, LU M K, CHOU L W, et al. Changes in balance, gait and electroencephalography oscillations after robot-assisted gait training: an exploratory study in people with chronic stroke[J]. Brain Sci, 2020, 10(11): 821.
doi: 10.3390/brainsci10110821 |
[62] | 严晓华, 徐开寿. 经颅磁刺激在儿童神经康复中的应用进展[J]. 中国康复医学杂志, 2014, 29(10): 995-998. |
YAN X H, XU K S. Chin J Rehabil Med, 2014, 29(10): 995-998. |
[1] | SHAO Weiting, LEI Jianghua. Effect of response interruption and redirection as a behavioral intervention on vocal stereotypy in children with autism spectrum disorder: a scoping review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 10-20. |
[2] | LUO Lihua, WANG Yusheng, LI Jianfeng, DONG Jige. Effect of early postoperative comprehensive rehabilitation on children and youth with supracondylar fracture of humerus complicated with ulnar nerve injury [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 105-110. |
[3] | LIN Na, GAO Hanlu, LU Huiping, CHEN Yanqing, ZHENG Junfan, CHEN Shurong. Effect of virtual reality on upper limb function after stroke: a study of diffusion tensor imaging [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 61-67. |
[4] | WANG Haoyi, SHI Yawei, LU Jun, XU Guangxu. Impact of subjective vertical perception impairment on function in stroke patients: a retrospective study [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 68-73. |
[5] | CHEN Junwen, CHEN Qian, CHEN Cheng, LI Shuyue, LIU Lingling, WU Cunshu, GONG Xiang, LU Jun, XU Guangxu. Effect of modified Baduanjin exercise on cardiopulmonary function, motor function and activities of daily living for stroke patients [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 74-80. |
[6] | HU Yonglin, MA Ying, DOU Chao, LU Anmin, JIANG Xiaoge, SONG Xinjian, XIAO Yuhua. Effect of neural mobilization based on shoulder control training on shoulder pain and upper limb function in stroke patients with hemiplegia [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 81-86. |
[7] | LIU Dong, XU Zihan, LI Jiang, JU Ping. Effect of high-frequency repetitive transcranial magnetic stimulation in M1 region combined with dorsolateral prefrontal cortex on electroencephalogram θ frequency band amplitude of patients with neuropathic pain after spinal cord injury [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 87-94. |
[8] | WANG He, HAN Liang, KAN Mengfan, YU Shaohong. Efficacy of electrical stimulation on shoulder-hand syndrome after stroke: a systematic review and meta-analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1048-1056. |
[9] | SUN Tengfang, REN Mengting, YANG Lin, WANG Yaoting, WANG Hongyu, YAN Xingzhou. Effect of hyperbaric oxygen therapy combined with repetitive peripheral magnetic stimulation on ankle motor function and balance of stroke patients [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 875-881. |
[10] | WANG Ya'nan, LIU Xihua. Correlation and predictive effect of subjective and objective balance function measurements in stroke patients with hemiplegia [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 890-895. |
[11] | WANG Haiyun, WANG Yin, ZHOU Xinjie, HE Aiqun. Effect of transcranial direct current stimulation combined with acupuncture on central and upper limb function in stroke patients based on central-peripheral-central theory [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 919-925. |
[12] | CHEN Yiting, WANG Qian, CUI Shenhong, LI Yingcai, ZHANG Siyu, WEI Yanxu, REN Hui, LENG Jun, CHEN Bin. Effect of bilateral sequential repetitive transcranial magnetic stimulation on motor function of upper limbs in stroke patients [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 926-932. |
[13] | LI Zhenya, SUN Jie, GUO Pengfei, WANG Guangming. Correlation between changes of swallowing function in oral and pharyngeal phases, and aspiration in stroke patients based on videofluroscopic swallowing study [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 933-939. |
[14] | MENG Xiangqiang, XIONG Qi, CHEN Gengfa, BAI Yang, ZOU Tianzi, FENG Zhen. Effect of repetitive transcranial magnetic stimulation combined with median nerve electrical stimulation on patients with prolonged disorders of consciousness in different age [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 940-947. |
[15] | ZHANG Yuan, YANG Jian. School health services and effectiveness based on World Health Organization health-promoting school framework: a scoping review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 791-799. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|