《Chinese Journal of Rehabilitation Theory and Practice》 ›› 2023, Vol. 29 ›› Issue (2): 174-181.doi: 10.3969/j.issn.1006-9771.2023.02.006
Previous Articles Next Articles
Received:
2022-09-28
Revised:
2022-11-08
Published:
2023-02-25
Online:
2023-03-16
Contact:
JIN Mu
E-mail:jinmu0119@hotmail.com
Supported by:
CLC Number:
LUO Lan, LI Lu, JIN Mu. Effect of xenon post-conditioning on spinal cord ischemia/reperfusion injury in rats: regulating Akt signaling pathway and autophagy[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(2): 174-181.
[1] |
GAUDINO M, KHAN F M, RAHOUMA M, et al. Spinal cord injury after open and endovascular repair of descending thoracic and horacoabdominal aortic aneurysms: a meta-analysis[J]. J Thorac Cardiovasc Surg, 2022, 163(2): 552-564.
doi: 10.1016/j.jtcvs.2020.04.126 |
[2] |
KHACHATRYAN Z, HAUNSCHILD J, VON ASPERN K, et al. Ischemic spinal cord injury-experimental evidence and evolution of protective measures[J]. Ann Thorac Surg, 2022, 113(5): 1692-1702.
doi: 10.1016/j.athoracsur.2020.12.028 |
[3] |
MAZE M, LAITIO T. Neuroprotective properties of xenon[J]. Mol Neurobiol, 2020, 57(1): 118-124.
doi: 10.1007/s12035-019-01761-z pmid: 31758401 |
[4] |
LIU F, LIU S L, PATTERSON T A, et al. Effects of xenon-based anesthetic exposure on the expression levels of polysialic acid neural cell adhesion molecule (PSA-NCAM) on human neural stem cell-derived neurons[J]. Mol Neurobiol, 2020, 57(1): 217-225.
doi: 10.1007/s12035-019-01771-x pmid: 31522383 |
[5] | 罗兰, 佟家祺, 李璐, 等. 氙气后处理对大鼠脊髓缺血再灌注损伤起保护作用:基于下调mTOR通路和抑制内质网应激介导的神经元凋亡[J]. 南方医科大学学报, 2022, 42(8): 1256-1262. |
LUO L, TONG J Q, LI L, et al. Xenon post-conditioning protects against spinal cord ischemia-reperfusion injury in rats by downregulating mTOR pathway and inhibiting endoplasmic reticulum stress-induced neuronal apoptosis[J]. J South Med Univ, 2022, 42(8): 1256-1262. | |
[6] | 侯思雨, 杨彦伟, 金沐, 等. 大鼠脊髓缺血再灌注损伤后ERK、Akt的表达与细胞凋亡关系的研究[J]. 心肺血管病杂志, 2015, 34(1): 62-64. |
HOU S Y, YANG Y W, JIN M, et al. Neuronal apoptosis and expressions of ERK, Akt in rats with spinal cord ischemia reperfusion injury[J]. J Cardiov Pulm Dis, 2015, 34(1): 62-64. | |
[7] |
YANG Y W, LU J K, QING E M, et al. Post-conditioning by xenon reduces ischaemia-reperfusion injury of the spinal cord in rats[J]. Acta Anaesthesiol Scand, 2012, 56(10): 1325-1331.
doi: 10.1111/j.1399-6576.2012.02718.x pmid: 22621442 |
[8] |
YANG Y W, CHENG W P, LU J K, et al. Timing of xenon-induced delayed postconditioning to protect against spinal cord ischemia-reperfusion injury in rats[J]. Br J Anaesth, 2014, 113(1): 168-176.
doi: 10.1093/bja/aet352 |
[9] |
YANG Y W, WANG Y L, LU J K, et al. Delayed xenon post-conditioning mitigates spinal cord ischemia/reperfusion injury in rabbits by regulating microglial activation and inflammatory factors[J]. Neural Regen Res, 2018, 13(3): 510-517.
doi: 10.4103/1673-5374.228757 |
[10] |
LIU S Y, YANG Y W, JIN M, et al. Xenon-delayed postconditioning attenuates spinal cord ischemia/reperfusion injury through activation Akt and ERK signaling pathways in rats[J]. J Neurol Sci, 2016, 368: 277-284.
doi: 10.1016/j.jns.2016.07.009 pmid: 27538649 |
[11] | LIU G Y, SABATINI D M. mTOR at the nexus of nutrition, growth, ageing and disease[J]. Nat Rev Mol Cell Biol, 2020, 21(4): 183-203. |
[12] |
BERTACCHINI J, HEIDARI N, MEDIANI L, et al. Targeting PI3K/AKT/mTOR network for treatment of leukemia[J]. Cell Mol Life Sci, 2015, 72(12): 2337-2347.
doi: 10.1007/s00018-015-1867-5 pmid: 25712020 |
[13] |
REZQ S, HASSAN R, MAHMOUD M F. Rimonabant ameliorates hepatic ischemia/reperfusion injury in rats: involvement of autophagy via modulating ERK- and PI3K/AKT-mTOR pathways[J]. Int Immunopharmacol, 2021, 100: 108140.
doi: 10.1016/j.intimp.2021.108140 |
[14] |
SHI B H, MA M Q, ZHENG Y T, et al. mTOR and Beclin1: two key autophagy-related molecules and their roles in myocardial ischemia/reperfusion injury[J]. J Cell Physiol, 2019, 234(8): 12562-12568.
doi: 10.1002/jcp.28125 pmid: 30618070 |
[15] |
ZHOU K L, ZHENG Z L, LI Y, et al. TFE3, a potential therapeutic target for spinal cord injury via augmenting autophagy flux and alleviating ER stress[J]. Theranostics, 2020, 10(20): 9280-9302.
doi: 10.7150/thno.46566 pmid: 32802192 |
[16] | MUÑOZ-GALDEANO T, REIGADA D, et al. Cell specific changes of autophagy in a mouse model of contusive spinal cord injury[J]. Front Cell Neurosci, 2018, 12: 164. |
[17] |
BASSO D M, BEATTIE M S, BRESNAHAN J C. A sensitive and reliable locomotor rating scale for open field testing in rats[J]. J Neurotrauma, 1995, 12(1): 1-21.
doi: 10.1089/neu.1995.12.1 |
[18] |
GUO Y, MA Y, PAN Y L, et al. Jisuikang, a Chinese herbal formula, increases neurotrophic factor expression and promotes the recovery of neurological function after spinal cord injury[J]. Neural Regen Res, 2017, 12(9): 1519-1528.
doi: 10.4103/1673-5374.215264 pmid: 29089999 |
[19] |
MORAIS R, ANDRADE L, LOURENÇO A, et al. How xenon works: neuro and cardioprotection mechanisms[J]. Acta Med Port, 2014, 27(2): 259-265.
doi: 10.20344/amp.4782 |
[20] |
LIANG M, AHMAD F, DICKINSON R. Neuroprotection by the noble gases argon and xenon as treatments for acquired brain injury: a preclinical systematic review and meta-analysis[J]. Br J Anaesth, 2022, 129(2): 200-218.
doi: 10.1016/j.bja.2022.04.016 pmid: 35688658 |
[21] |
ZHANG Y R, ZHANG M D, LIU S H, et al. Xenon exerts anti-seizure and neuroprotective effects in kainic acid-induced status epilepticus and neonatal hypoxia-induced seizure[J]. Exp Neurol, 2019, 322: 113054.
doi: 10.1016/j.expneurol.2019.113054 |
[22] |
DANDEKAR M P, YIN X, PENG T, et al. Repetitive xenon treatment improves post-stroke sensorimotor and neuropsychiatric dysfunction[J]. J Affect Disord, 2022, 301: 315-330.
doi: 10.1016/j.jad.2022.01.025 |
[23] |
DE DEKEN J, REX S, LERUT E, et al. Postconditioning effects of argon or xenon on early graft function in a porcine model of kidney autotransplantation[J]. Br J Surg, 2018, 105(8): 1051-1060.
doi: 10.1002/bjs.10796 pmid: 29603122 |
[24] |
PENG T, BRITTON G L, KIM H, et al. Therapeutic time window and dose dependence of xenon delivered via echogenic liposomes for neuroprotection in stroke[J]. CNS Neurosci Ther, 2013, 19(10): 773-784.
doi: 10.1111/cns.12159 pmid: 23981565 |
[25] |
ZHAO H L, HUANG H, OLOGUNDE R, et al. Xenon treatment protects against remote lung injury after kidney transplantation in rats[J]. Anesthesiology, 2015, 122(6): 1312-1326.
doi: 10.1097/ALN.0000000000000664 pmid: 25856291 |
[26] | GU C J, LI L W, HANG Y F, et al. Salidroside ameliorates mitochondria-dependent neuronal apoptosis after spinal cord ischemia-reperfusion injury partially through inhibiting oxidative stress and promoting mitophagy[J]. Oxid Med Cell Longev, 2020, 2020: 3549704. |
[27] |
ZHENG W J, LIU B, SHI E Y. Perillaldehyde alleviates spinal cord ischemia-reperfusion injury via activating the Nrf2 pathway[J]. J Surg Res, 2021, 268: 308-317.
doi: 10.1016/j.jss.2021.06.055 pmid: 34399353 |
[28] |
LUO C L, TAO L Y. The function and mechanisms of autophagy in spinal cord injury[J]. Adv Exp Med Biol, 2020, 1207: 649-654.
doi: 10.1007/978-981-15-4272-5_47 pmid: 32671782 |
[29] |
LIAO H Y, WANG Z Q, RAN R, et al. Biological functions and therapeutic potential of autophagy in spinal cord injury[J]. Front Cell Dev Biol, 2021, 9: 761273.
doi: 10.3389/fcell.2021.761273 |
[30] |
ZHANG D, WANG F, ZHAI X, et al. Lithium promotes recovery of neurological function after spinal cord injury by inducing autophagy[J]. Neural Regen Res, 2018, 13(12): 2191-2199.
doi: 10.4103/1673-5374.241473 pmid: 30323152 |
[31] |
LI W C, YAO S P, LI H R, et al. Curcumin promotes functional recovery and inhibits neuronal apoptosis after spinal cord injury through the modulation of autophagy[J]. J Spinal Cord Med, 2021, 44(1): 37-45.
doi: 10.1080/10790268.2019.1616147 |
[32] |
VARGOVA I, MACHOVA URDZIKOVA L, KAROVA K, et al. Involvement of mTOR pathways in recovery from spinal cord injury by modulation of autophagy and immune response[J]. Biomedicines, 2021, 9(6): 593.
doi: 10.3390/biomedicines9060593 |
[33] |
ZHOU K L, SANSUR C A, XU H Z, et al. The temporal pattern, flux, and function of autophagy in spinal cord injury[J]. Int J Mol Sci, 2017, 18(2): 466.
doi: 10.3390/ijms18020466 |
[34] |
DUPONT N, JIANG S Y, PILLI M, et al. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β[J]. EMBO J, 2011, 30(23): 4701-4711.
doi: 10.1038/emboj.2011.398 pmid: 22068051 |
[35] |
CHEN H C, FONG T H, LEE A W, et al. Autophagy is activated in injured neurons and inhibited by methylprednisolone after experimental spinal cord injury[J]. Spine, 2012, 37(6): 470-475.
doi: 10.1097/BRS.0b013e318221e859 |
[36] | MARQUEZ R T, XU L. Bcl-2: Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch[J]. Am J Cancer Res, 2012, 2(2): 214-221. |
[37] |
RONG Y L, FAN J, JI C Y, et al. USP11 regulates autophagy-dependent ferroptosis after spinal cord ischemia-reperfusion injury by deubiquitinating Beclin 1[J]. Cell Death Differ, 2022, 29(6): 1164-1175.
doi: 10.1038/s41418-021-00907-8 |
[38] |
KANNO H, OZAWA H, SEKIGUCHI A, et al. The role of autophagy in spinal cord injury[J]. Autophagy, 2009, 5(3): 390-392.
pmid: 19158496 |
[39] |
HOU H P, ZHANG L H, ZHANG L C, et al. Acute spinal cord injury in rats induces autophagy activation[J]. Turk Neurosurg, 2014, 24(3): 369-373.
doi: 10.5137/1019-5149.JTN.8623-13.0 pmid: 24848176 |
[40] |
ZHANG D, YUAN Y, ZHU J C, et al. Insulin-like growth factor 1 promotes neurological functional recovery after spinal cord injury through inhibition of autophagy via the PI3K/Akt/mTOR signaling pathway[J]. Exp Ther Med, 2021, 22(5): 1265.
doi: 10.3892/etm.2021.10700 pmid: 34594402 |
[41] |
CHEN Z, FU Q G, SHEN B L, et al. Enhanced p62 expression triggers concomitant autophagy and apoptosis in a rat chronic spinal cord compression model[J]. Mol Med Rep, 2014, 9(6): 2091-2096.
doi: 10.3892/mmr.2014.2124 pmid: 24715058 |
[42] |
JEONG S J, ZHANG X, RODRIGUEZ-VELEZ A, et al. p62/SQSTM1 and selective autophagy in cardiometabolic diseases[J]. Antioxid Redox Signal, 2019, 31(6): 458-471.
doi: 10.1089/ars.2018.7649 |
[43] |
LAMARK T, SVENNING S, JOHANSEN T. Regulation of selective autophagy: the p62/SQSTM1 paradigm[J]. Essays Biochem, 2017, 61(6): 609-624.
doi: 10.1042/EBC20170035 pmid: 29233872 |
[1] | LIU Dong, XU Zihan, LI Jiang, JU Ping. Effect of high-frequency repetitive transcranial magnetic stimulation in M1 region combined with dorsolateral prefrontal cortex on electroencephalogram θ frequency band amplitude of patients with neuropathic pain after spinal cord injury [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 87-94. |
[2] | ZHANG Yuan, YANG Jian. Exercise rehabilitation interventions for people with spinal cord injury and their health benefits: a systematic review of systematic reviews based on ICD-11 and ICF [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(12): 1377-1385. |
[3] | SHI Xiaoyu, YANG Jian. Adaptive physical activity and its health benefits for patients with spinal cord injury based on ICF: a scoping review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(12): 1395-1404. |
[4] | LI Fang, HUO Su, DU Jubao, LIU Xiuzhen, LI Xiaoshuang, SONG Weiqun. Effect of transcranial direct current stimulation combined with task-oriented rehabilitation training on forelimb motor dysfunction in rats with spinal cord injury [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 777-781. |
[5] | WANG Yiji, ZHOU Hongjun, HE Zejia, LIU Genlin, ZHENG Ying, HAO Chunxia, WEI Bo, KANG Haiqiong, ZHANG Ying, LU Xiaolei, YUAN Yuan, MENG Qianru. Relationship between symmetry of lower limb function and gait symmetry in patients with incomplete spinal cord injury [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(6): 639-645. |
[6] | YUAN Yuan, ZHOU Hongjun, CONG Xinying, LIU Genlin, WEI Bo, ZHENG Ying, HAO Chunxia, ZHANG Ying, WANG Yiji, KANG Haiqiong, LU Xiaolei, MENG Qianru. Relationship between impairment and magnetic resonance imaging finding in patients with traumatic cervical spinal cord injury after surgery [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(6): 725-730. |
[7] | JIANG Le, DU Liangjie, HUANG Fubiao. Mood states and cognitive performance in patients with complete spinal cord injury [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(5): 576-581. |
[8] | GUO Shuang, XIE Yongqi, ZHANG Liang, ZHANG Chunjia, PENG Run, YANG Degang, YANG Mingliang. Related factors and prediction model for neurological outcome of dance-associated pediatric spinal cord injury without radiographic abnormality [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(5): 582-589. |
[9] | LIU Genlin,ZHOU Hongjun,LI Jianjun,WEI Bo,ZHENG Ying,HAO Chunxia,ZHANG Ying,WANG Yiji,KANG Haiqiong,LU Xiaolei,YUAN Yuan,MENG Qianru. Advance in neurological classification of spinal cord injury with complications [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(8): 934-938. |
[10] | KANG Haiqiong,ZHOU Hongjun,LIU Genlin,WEI Bo,ZHENG Ying,ZHANG Ying,HAO Chunxia,WANG Yiji,LU Xiaolei,YUAN Yuan,MENG Qianru. Changes of bone mineral density in distal femur and proximal tibia in patients with spinal cord injury [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(7): 855-858. |
[11] | ZHANG Miaoyuan,HE Ying,LI Xiaoxia,PENG Min,ZHANG Lei,LIU Shuying,KONG Ying. Self-management status and related factors of patients with intermittent clean catheterization after spinal cord injury [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(6): 716-724. |
[12] | ZHOU Xiaojue,FENG Jing,PANG Rizhao,LIU Jie,ZHANG Anren. Every-other-day fasting attenuated inflammation in rats after spinal cord injury via the aryl hydrocarbon receptor/suppressor of cytokine signaling 2/nuclear transcription factor-κB signaling pathway [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(5): 544-551. |
[13] | WEI Juanfang,WANG Linjie,CUI Yanru,CEN Qiuyu,ZHANG Anren. Effects of bone marrow mesenchymal stem cells derived exosomes on spinal cord injured animals: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(5): 585-592. |
[14] | LIU Gang,TIAN Shan,BAI Xiao-chen,QI Yuan,XIE Hong-yu,ZHU Yu-lian,WU Yi. Factors Related to Penile Erectile Function for Men with Spinal Cord Injury [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2021, 27(7): 840-843. |
[15] | Ying ZHANG,Hong-jun ZHOU,Gen-lin LIU,Ying ZHENG,Xiao-lei LU,Hai-qiong KANG,Chun-xia HAO,Bo WEI,Yi-ji WANG,Yuan YUAN,Qian-ru MENG,Jian-jun LI. Survey of Neurological Function and Complications of Pediatric Spinal Cord Injury [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2021, 27(6): 706-711. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|