《Chinese Journal of Rehabilitation Theory and Practice》 ›› 2022, Vol. 28 ›› Issue (11): 1318-1324.doi: 10.3969/j.issn.1006-9771.2022.11.011
Previous Articles Next Articles
Received:
2022-09-19
Revised:
2022-10-21
Published:
2022-11-25
Online:
2022-12-20
Contact:
NIU Zhendong
E-mail:zniu@bit.edu.com
Supported by:
CLC Number:
JIANG Jiarui,NIU Zhendong. Deep learning for diagnosis of Alzheimer's disease in the past five years: a visualized analysis[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(11): 1318-1324.
"
频次 | 关键词 | 中心性 | 关键词 |
---|---|---|---|
168 | alzheimers disease | 0.48 | selection |
137 | deep learning | 0.22 | resting state fMRI |
104 | MCI | 0.20 | transfer learning |
99 | classification | 0.19 | disease |
89 | diagnosis | 0.18 | feature ranking |
77 | MRI | 0.16 | structural MRI |
69 | convolutional neural network | 0.16 | alpha synuclein |
48 | dementia | 0.15 | recognition |
45 | machine learning | 0.15 | hippocampal |
43 | prediction | 0.15 | performance |
"
分类号 | 大小 | 轮廓值 | 关键词 |
---|---|---|---|
0 | 41 | 0.76 | segmentation; early diagnosis; pattern; transfer learning; image classification |
1 | 31 | 0.71 | fusion; feature; selection; hippocampal; MRI; feature extraction |
2 | 30 | 0.92 | computer-aided diagnosis; classification; MCI; convolutional neural network; eeg |
3 | 25 | 0.87 | dementia; fMRI; network; recongnition; robust |
4 | 22 | 0.96 | ADNI; PET; sMRI; OASIS; big data |
5 | 22 | 0.86 | support vector machine; progression; deep neural network; machine learning |
6 | 18 | 0.94 | disease; feature ranking; image analysis; ensemble; bioelectronic medicine |
7 | 14 | 0.93 | amyloid beta; alpha synuclein; FDG PET; impairment; neurodegenerative disorder |
8 | 14 | 0.94 | voxel based morphometry; prediction; volumetry; anatomical landmark; patch |
9 | 13 | 0.88 | guideline; feature representation; Mini Mental State; 3d convolutional network; tau |
"
频次 | 作者 | 期刊/会议 | 文题 |
---|---|---|---|
43 | Liu等 | IEEE T Bio-Med Eng | Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease |
42 | Litjens等 | Med Image Anal | A survey on deep learning in medical image analysis |
36 | Basaia等 | Neuroimage-Clin | Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks |
35 | Hosseiniasl等 | IEEE Image Proc | Alzheimer's disease diagnostics by adaptation of 3D convolutional network |
35 | Lecun等 | Nature | Deep learning |
[1] | GOULDING M R. Public Health and Aging: Trends in Aging: United States and Worldwide (Morbidity and Mortality Weekly Report)[R]. Centers for Disease Control and Prevention, 2003. |
[2] |
KNOPMAN D S, AMIEVA H, PETERSEN R C, et al. Alzheimer disease[J]. Nat Rev Dis Primers, 2021, 7(1): 1-21.
doi: 10.1038/s41572-020-00234-1 |
[3] |
ALBERDI A, AZTIRIA A, BASARAB A. On the early diagnosis of Alzheimer's disease from multimodal signals: a survey[J]. Artif Intell Med, 2016, 71: 1-29.
doi: 10.1016/j.artmed.2016.06.003 pmid: 27506128 |
[4] | YIANNOPOULOU K G, PAPAGEORGIOU S G. Current and future treatments in Alzheimer disease: an update[J]. J Cent Nerv Syst Dis, 2020, 12: 1179573520907397. |
[5] |
DUBOIS B, FELDMAN H H, JACOVA C, et al. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria[J]. Lancet Neurol, 2007, 6(8): 734-746.
doi: 10.1016/S1474-4422(07)70178-3 pmid: 17616482 |
[6] | 楚阳, 徐文龙. 基于计算机辅助诊断技术的阿尔兹海默症早期分类研究综述[J]. 计算机工程与科学, 2022, 44(5): 879-893. |
CHU Y, XU W L. Review of early classification of Alzheimer's disease based on computer aided diagnosis technology[J]. Comput Eng Sci, 2022, 44(5): 879-893 | |
[7] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
doi: 10.1038/nature14539 |
[8] |
KRUTHIKA K R, MAHESHAPPA H D; Alzheimer's Disease Neuroimaging Initiative. CBIR system using Capsule Networks and 3D CNN for Alzheimer's disease diagnosis[J]. Inform Med Unlock, 2019, 14: 59-68.
doi: 10.1016/j.imu.2018.12.001 |
[9] | 王鑫, 邹海欧, 孙静. 基于CiteSpace的社区舒缓医疗国际研究现状与趋势分析[J]. 中国医学科学院学报, 2022, 44(3): 450-457. |
WANG X, ZOU H O, SUN J. Analysis of the status and trend of international research on community palliative care based on CiteSpace[J]. J Chin Acad Med Sci, 2022, 44(3): 450-457. | |
[10] | 顾海, 奉子岚, 吴迪, 等. 我国远程医疗研究现状及趋势:基于CiteSpace的文献量化分析[J]. 信息资源管理学报, 2020, 10(4): 119-129. |
GU H, FENG Z L, WU D, et al. Current situation and trend of telemedicine research in China: quantitative analysis of literature based on CiteSpace[J]. J Inform Resource Manag, 2020, 10(4): 119-129. | |
[11] |
侯剑华, 胡志刚. CiteSpace软件应用研究的回顾与展望[J]. 现代情报, 2013, 33(4): 99-103.
doi: 10.3969/j.issn.1008-0821.2013.04.022 |
HOU J H, HU Z G. Review and prospect of research on the application of SiteSpace software[J]. Modern Intell, 2013, 33(4): 99-103.
doi: 10.3969/j.issn.1008-0821.2013.04.022 |
|
[12] |
LIU M, LI F, YAN H, et al. A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease[J]. Neuroimage, 2020, 208: 116459.
doi: 10.1016/j.neuroimage.2019.116459 |
[13] |
LIU M, CHENG D, WANG K, et al. Multi-modality cascaded convolutional neural networks for Alzheimer's disease diagnosis[J]. Neuroinformatics, 2018, 16(3): 295-308.
doi: 10.1007/s12021-018-9370-4 |
[14] |
AHMED M R, ZHANG Y, FENG Z, et al. Neuroimaging and machine learning for dementia diagnosis: recent advancements and future prospects[J]. IEEE Rev Biomed Eng, 2018, 12: 19-33.
doi: 10.1109/RBME.2018.2886237 |
[15] | WANG S H, ZHOU Q, YANG M, et al. ADVIAN: Alzheimer's disease VGG-inspired attention network based on convolutional block attention module and multiple way data augmentation[J]. Front Aging Neurosci, 2021, 13: 313. |
[16] |
PUNJABI A, MARTERSTECK A, WANG Y, et al. Neuroimaging modality fusion in Alzheimer's classification using convolutional neural networks[J]. PLoS One, 2019, 14(12): e0225759.
doi: 10.1371/journal.pone.0225759 |
[17] |
JIN D, ZHOU B, HAN Y, et al. Generalizable, reproducible, and neuroscientifically interpretable imaging biomarkers for Alzheimer's disease[J]. Adv Sci, 2020, 7(14): 2000675.
doi: 10.1002/advs.202000675 |
[18] |
SON H J, OH J S, OH M, et al. The clinical feasibility of deep learning-based classification of amyloid PET images in visually equivocal cases[J]. Eur J Nuclear Med Mol Imaging, 2020, 47(2): 332-341.
doi: 10.1007/s00259-019-04595-y |
[19] | GHAZI M M, NIELSEN M, PAI A, et al. Training recurrent neural networks robust to incomplete data: application to Alzheimer's disease progression modeling[J]. Med Imag Analysis, 2019, 53: 39-46. |
[20] | 陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2): 242-253. |
CHEN Y, CHEN C M, LIU Z Y, et al. The methodology function of CiteSpace mapping knowledge domains[J]. Stud Sci Sci, 2015, 33(2): 242-253. | |
[21] |
LIAN C, LIU M, ZHANG J, et al. Hierarchical fully convolutional network for joint atrophy localization and Alzheimer's disease diagnosis using structural MRI[J]. IEEE Trans Pattern Analysis Machine Intell, 2018, 42(4): 880-893.
doi: 10.1109/TPAMI.2018.2889096 |
[22] |
CHOI H, JIN K H. Alzheimer's Disease Neuroimaging Initiative. Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging[J]. Behav Brain Res, 2018, 344: 103-109.
doi: S0166-4328(18)30101-3 pmid: 29454006 |
[23] |
ARBABSHIRANI M R, PLIS S, SUI J, et al. Single subject prediction of brain disorders in neuroimaging: promises and pitfalls[J]. Neuroimage, 2017, 145: 137-165.
doi: S1053-8119(16)00210-X pmid: 27012503 |
[24] |
BI X, WANG H. Early Alzheimer's disease diagnosis based on EEG spectral images using deep learning[J]. Neural Networks, 2019, 114: 119-135.
doi: S0893-6080(19)30048-6 pmid: 30903945 |
[25] |
JACK C R, BERNSTEIN M A, FOX N C, et al. The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods[J]. J Magn Reson Imaging, 2008, 27(4): 685-691.
doi: 10.1002/jmri.21049 pmid: 18302232 |
[26] |
DONNELLY-KEHOE P A, PASCARIELLO G O, GÓMEZ J C, et al. Looking for Alzheimer's disease morphometric signatures using machine learning techniques[J]. J Neurosci Method, 2018, 302: 24-34.
doi: 10.1016/j.jneumeth.2017.11.013 |
[27] |
MARCUS D S, FOTENOS A F, CSERNANSKY J G, et al. Open access series of imaging studies: longitudinal MRI data in nondemented and demented older adults[J]. J Cogn Neurosci, 2010, 22(12): 2677-2684.
doi: 10.1162/jocn.2009.21407 |
[28] | AREVALO-RODRIGUEZ I, SMAILAGIC N, ROQUÉ I FIGULS M, et al. Mini-Mental State Examination (MMSE) for the detection of Alzheimer's disease and other dementias in people with mild cognitive impairment (MCI)[J]. Cochrane Database Syst Rev, 2015 (3): CD010783. |
[29] |
BI X, ZHAO X, HUANG H, et al. Functional brain network classification for Alzheimer's disease detection with deep features and extreme learning machine[J]. Cogn Comput, 2020, 12(3): 513-527.
doi: 10.1007/s12559-019-09688-2 |
[30] | YU X, PENG B, SHI J, et al. 3D Convolutional networks based automatic diagnosis of Alzheimer's disease using structural MRI[C]. 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, 2020. |
[31] |
LEE E, CHOI J S, KIM M, et al. Toward an interpretable Alzheimer's disease diagnostic model with regional abnormality representation via deep learning[J]. Neuroimage, 2019, 202: 116113.
doi: 10.1016/j.neuroimage.2019.116113 |
[32] |
PARK C, HA J, PARK S. Prediction of Alzheimer's disease based on deep neural network by integrating gene expression and DNA methylation dataset[J]. Expert Syst Appl, 2020, 140: 112873.
doi: 10.1016/j.eswa.2019.112873 |
[33] |
JAIN R, JAIN N, AGGARWAL A, et al. Convolutional neural network based Alzheimer's disease classification from magnetic resonance brain images[J]. Cogn Syst Res, 2019, 57: 147-159.
doi: 10.1016/j.cogsys.2018.12.015 |
[34] |
TUFAIL A B, MA Y K, KAABAR M K A, et al. Classification of initial stages of Alzheimer's disease through PET neuroimaging modality and deep learning: quantifying the impact of image filtering approaches[J]. Mathematics, 2021, 9(23): 3101.
doi: 10.3390/math9233101 |
[35] |
FOLEGO G, WEILER M, CASSEB R F, et al. Alzheimer's disease detection through whole-brain 3D-CNN MRI[J]. Front Bioeng Biotechnol, 2020, 8: 534592.
doi: 10.3389/fbioe.2020.534592 |
[36] |
MARTINEZ-MURCIA F J, ORTIZ A, GORRIZ J M, et al. Studying the manifold structure of Alzheimer's disease: a deep learning approach using convolutional autoencoders[J]. IEEE J Biomed Health Inform, 2019, 24(1): 17-26.
doi: 10.1109/JBHI.2019.2914970 |
[37] |
GUO H, ZHANG Y. Resting state fMRI and improved deep learning algorithm for earlier detection of Alzheimer's disease[J]. IEEE Access, 2020, 8: 115383-115392.
doi: 10.1109/ACCESS.2020.3003424 |
[38] |
LIU Y, YAN Z. A combined deep-learning and Lattice Boltzmann model for segmentation of the hippocampus in MRI[J]. Sensors, 2020, 20(13): 3628.
doi: 10.3390/s20133628 |
[39] | ZENG N, LI H, PENG Y. A new deep belief network-based multi-task learning for diagnosis of Alzheimer's disease[J]. Neural Comput Appl, 2021: 1-12. |
[40] |
LIU S, LIU S, CAI W, et al. Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease[J]. IEEE Trans Biomed Eng, 2014, 62(4): 1132-1140.
doi: 10.1109/TBME.2014.2372011 |
[41] | BASAIA S, AGOSTA F, WAGNER L, et al. Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks[J]. NeuroImage, 2019, 21: 101645. |
[42] |
SUK H I, LEE S W, SHEN D, et al. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis[J]. NeuroImage, 2014, 101: 569-582.
doi: 10.1016/j.neuroimage.2014.06.077 |
[43] |
ZHANG T, SHI M. Multi-modal neuroimaging feature fusion for diagnosis of Alzheimer's disease[J]. J Neurosci Method, 2020, 341: 108795.
doi: 10.1016/j.jneumeth.2020.108795 |
[44] | WEN J, THIBEAU-SUTRE E, DIAZ-MELO M, et al. Convolutional neural networks for classification of Alzheimer's disease: overview and reproducible evaluation[J]. Med Imag Analysis, 2020, 63: 101694. |
[45] |
PELKA O, FRIEDRICH C M, NENSA F, et al. Sociodemographic data and APOE-ε4 augmentation for MRI-based detection of amnestic mild cognitive impairment using deep learning systems[J]. PLoS One, 2020, 15(9): e0236868.
doi: 10.1371/journal.pone.0236868 |
[46] |
KANG L, JIANG J, HUANG J, et al. Identifying early mild cognitive impairment by multi-modality MRI-based deep learning[J]. Front Aging Neurosci, 2020, 12: 206.
doi: 10.3389/fnagi.2020.00206 pmid: 33101003 |
[1] | ZOU Yucong, ZHOU Jing, LIN Weiming, LI Dongxia, WANG Juan, WANG Yuqi, WANG Yulong. Treatments for prolonged disorder of consciousness in recent five years: a visualized analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1065-1071. |
[2] | MA Tiantian, YU Zifu, QIN Fang, LENG Xiaoxuan, LIU Xihua. Application of constraint-induced movement therapy in the field of rehabilitation: a visualized analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 822-832. |
[3] | WU Qianhao, HOU Rongjie, FU Liyuan. Pelvic floor rehabilitation domestic and abroad in the last decade: a visualized analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(6): 673-685. |
[4] | XU Minjie, WANG Bo, ZHOU Li, WANG Haifang, LEI Xiaojing, LI Ying, BAO Weiwei, MA Ya'nan, CHANG Jingling. Verbal and nonverbal cognitive function of aphasia after stroke based on Web of Science database: a visualized analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(4): 452-464. |
[5] | TANG Zhiqing, LIU Tianhao, HAN Kaiyue, LIU Ying, ZHAO Jingdu, ZHANG Hao. Transcranial magnetic stimulation for stroke in recent five years: a visualized analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(3): 294-301. |
[6] | YUAN Yuan, ZHANG Guohui, ZHANG Hong. Exercise-induced muscle damage and physiotherapy: a visualized analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(3): 312-319. |
[7] | LIU Mingyue, FAN Yalei, ZHANG Meng, SONG Xueyi, LI Zhe. Brain-computer interface technology for stroke in the past decade: a visualized analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(2): 223-230. |
[8] | HU Jiaquan, ZHU Liling, JIANG Zhimei. Early screening tools for autism spectrum disorder in the past two decades: a visualized analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(11): 1304-1315. |
[9] | ZHANG Ning, YANG Yuanbin, TIAN Haolin, WAN Mengying. Application of functional near-infrared spectroscopy in rehabilitation: a visualized analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(10): 1171-1178. |
[10] | XU Hongli, ZHANG Qian, XUE Qing, YANG Yulin, MA Lihong, QIU Zhengang. Domestic and international researches related to postpartum rehabilitation in the last decade: a visualized analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(10): 1179-1188. |
[11] | YIN Minmin,LING Xing,YANG Yaru,DAI Hengyu,GE Shengnan,HUANG Zhaoming. Development of diagnosis, assessment and intervention solution for speech fluency disorder using WHO-FICs [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(6): 630-636. |
[12] | GE Shengnan,WANG Yongli,YIN Minmin,WAN Qin,YANG Yaru,Lancy Lantin HUANG,HUANG Zhaoming. Diagnosis, assessment and rehabilitation of speech disorders after cerebral palsy using WHO-FICs [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(6): 637-645. |
[13] | ZHANG Shiwen,ZHI Jincao,HUANG Meiling,PEI Fei,WANG Yan. Visualized analysis of researches on denervated muscle atrophy in the past five years [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(4): 399-406. |
[14] | ZHENG Wei,SUN Libing,LIU Chunhua,HAO Chuanping. Physical fitness for children and adolescents with intellectual disabilities: a visualized analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(12): 1435-1443. |
[15] | LAN Wanting,ZHONG Jiugen,SHEN Yingying,GONG Jiaheng,ZOU Zhi,HOU Xiaohui. Mechanism of exercise reducing neuroinflammation in autism spectrum disorder: a visualized analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(10): 1190-1197. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|