《Chinese Journal of Rehabilitation Theory and Practice》 ›› 2020, Vol. 26 ›› Issue (7): 784-787.doi: 10.3969/j.issn.1006-9771.2020.07.009
Previous Articles Next Articles
SUN Xiao-qin1,2,FENG Ying1,2,XIAO Nong1,2()
Received:
2019-10-31
Revised:
2020-02-17
Published:
2020-07-25
Online:
2020-07-24
Contact:
XIAO Nong
E-mail:xiaonongwl@163.com
Supported by:
CLC Number:
SUN Xiao-qin,FENG Ying,XIAO Nong. Advance in P300 Wave for Prognosis of Consciousness Disorders (review)[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2020, 26(7): 784-787.
[1] |
Walshe T M, Leonard C. Medical aspects of the persistent vegetative state[J]. N Engl J Med, 1994, 330(21): 1499-1508.
doi: 10.1056/NEJM199405263302107 |
[2] |
Laureys S, Celesia G G, Cohadon F, et al. Unresponsive wakefulness syndrome: a new name for the vegetative state or apallic syndrome[J]. BMC Med, 2010, 8(1): 68.
doi: 10.1186/1741-7015-8-68 |
[3] |
Giacino J T, Ashwal S, Childs N, et al. The minimally conscious state: definition and diagnostic criteria[J]. Neurology, 2002, 58(3): 349-353.
pmid: 11839831 |
[4] |
Heilinger A, Ortner R, la Bellar V, et al. Performance differences using a vibro-tactile P300 BCI in LIS-patients diagnosed with stroke and ALS[J]. Front Neurosci, 2018, 12:514.
doi: 10.3389/fnins.2018.00514 |
[5] |
Giacino J T, Katz D I, Schiff N D, et al. Comprehensive systematic review update summary: disorders of consciousness: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology; the American Congress of Rehabilitation Medicine; and the National Institute on Disability, Independent Living, and Rehabilitation Research[J]. Neurology, 2018, 91(10): 461-470.
doi: 10.1212/WNL.0000000000005928 pmid: 30089617 |
[6] |
Seel R T, Sherer M, Whyte J, et al. Assessment scales for disorders of consciousness: evidence-based recommendations for clinical practice and research[J]. Arch Phys Med Rehabil, 2010, 91(12): 1795-1813.
doi: 10.1016/j.apmr.2010.07.218 |
[7] |
Childs N L. Misdiagnosing the persistent vegetative state misdiagnosis certainly occurs[J]. BMJ, 1996, 313(7062): 944-945.
pmid: 8876118 |
[8] |
Schnakers C, Vanhaudenhuyse A, Giacino J, et al. Diagnostic accuracy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment[J]. BMC Neurol, 2009, 9(1): 35-40.
doi: 10.1186/1471-2377-9-35 |
[9] |
Formisano R, D'Ippolito M, Risetti M, et al. Vegetative state, minimally conscious state, akinetic mutism and Parkinsonism as a continuum of recovery from disorders of consciousness: an exploratory and preliminary study[J]. Funct Neurol, 2011, 26(1): 15-24.
pmid: 21693084 |
[10] |
Giacino J T, Katz D I, Schiff N D, et al. Practice Guideline Update Recommendations Summary: Disorders of Consciousness: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology; the American Congress of Rehabilitation Medicine; and the National Institute on Disability, Independent Living, and Rehabilitation Research[J]. Arch Phys Med Rehabil, 2018, 99(9): 1699-1709.
doi: 10.1016/j.apmr.2018.07.001 |
[11] |
Stender J, Gosseries O, Bruno M A, et al. Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: a clinical validation study[J]. Lancet (London, England), 2014, 384(9942): 514-522.
doi: 10.1016/S0140-6736(14)60042-8 |
[12] | Rollnik J D. Clinical neurophysiology of neurologic rehabilitation[J]. Handb Clin Neurol, 2019, 161(3): 187-194. |
[13] | Dovgialo M, Chabuda A, Duszyk A, et al. Assessment of statistically significant command-following in pediatric patients with disorders of consciousness, based on visual, auditory and tactile event-related potentials[J]. Int J Neural Syst, 2019, 29(3): 1-15. |
[14] |
Sculthorpe-Petley L, Liu C, Hajra S G, et al. A rapid event-related potential (ERP) method for point-of-care evaluation of brain function: development of the Halifax Consciousness Scanner[J]. J Neurosci Methods, 2015, 245(1): 64-72.
doi: 10.1016/j.jneumeth.2015.02.008 |
[15] | Helfrich R F. Cognitive neurophysiology: event-related potentials[J]. Handb Clin Neurol, 2019, 160(3): 543-558. |
[16] |
Rohaut B. Disentangling conscious from unconscious cognitive processing with event-related EEG potentials[J]. Rev Neurol (Paris), 2017, 173(7-8): 521-528.
doi: 10.1016/j.neurol.2017.08.001 |
[17] |
Balconi M. The relationship between coma near coma, disability ratings, and event-related potentials in patients with disorders of consciousness: a semantic association task[J]. Appl Psychophysiol Biofeedback, 2015, 40(4): 327-337.
doi: 10.1007/s10484-015-9304-y |
[18] | Lugo Z R, Quitadamo L R, Bianchi L, et al. Cognitive processing in non-communicative patients: what can event-related potentials tell us?[J]. Front Hum Neurosci, 2016, 10:569. |
[19] | Sutton S, Braren M, Zubin J, et al. Evoked-potential correlates of stimulus uncertainty[J]. Science (New York), 1965, 150(3700): 1187-1188. |
[20] |
Xie Q, Pan J, Chen Y, et al. A gaze-independent audiovisual brain-computer interface for detecting awareness of patients with disorders of consciousness[J]. BMC Neurol, 2018, 18(1): 144.
doi: 10.1186/s12883-018-1144-y |
[21] | 李晓裔, 李景恒. 脑损伤后综合征患者脑CT与事件相关电位的研究[J]. 贵州科学, 2001, 19(2): 71-73. |
Li X Y, Li J H. Study on event-related potential and brain CT in syndrome after brain trauma[J]. Guizhou Sci, 2001, 19(2): 71-73. | |
[22] |
Alberti A, Sarchielli P, Mazzotta G, et al. Event-related potentials in posttraumatic headache[J]. Headache, 2010, 41(6): 579-585.
doi: 10.1046/j.1526-4610.2001.041006579.x |
[23] |
Rivera-Lillo G, Rojas-Líbano D, Burgos P, et al. Reduced delta-band modulation underlies the loss of P300 responses in disorders of consciousness[J]. Clin Neurophysiol, 2018, 129(12): 2613-2622.
doi: S1388-2457(18)31339-7 pmid: 30458356 |
[24] |
Hauger S L, Olafsen K, Schnakers C, et al. Cognitive event-related potentials during the sub-acute phase of severe traumatic brain injury and their relationship to outcome[J]. J Neurotrauma, 2017, 34(22): 3124-3133.
doi: 10.1089/neu.2017.5062 |
[25] |
Li Y, Pan J, He Y, et al. Detecting number processing and mental calculation in patients with disorders of consciousness using a hybrid brain-computer interface system[J]. BMC Neurol, 2015, 15(1): 259.
doi: 10.1186/s12883-015-0521-z |
[26] |
Heinrich S P, Aertsen A. Oblique effects beyond low-level visual processing[J]. Vision Res, 2008, 48(6): 809-818.
doi: 10.1016/j.visres.2007.12.012 pmid: 18249436 |
[27] |
Rosenfeld J P, Biroschak J R, Kleschen M J, et al. Subjective and objective probability effects on P300 amplitude revisited[J]. Psychophysiology, 2005, 42(3): 356-359.
pmid: 15943689 |
[28] |
Schorr B, Schlee W, Arndt M, et al. Stability of auditory event-related potentials in coma research[J]. J Neurol, 2015, 262(2): 307-315.
doi: 10.1007/s00415-014-7561-y |
[29] | Soldatovicstajic B, Misicpavkov G, Bozic K, et al. Neuropsychological and neurophysiological evaluation of cognitive deficits related to the severity of traumatic brain injury[J]. Eur Rev Med Pharmacol Sci, 2014, 18(11): 1632-1637. |
[30] |
van Dinteren R, Arns M, Jongsma M L. P300 development across the lifespan: a systematic review and meta-analysis[J]. PLoS One, 2014, 9(2): e87347.
doi: 10.1371/journal.pone.0087347 |
[31] | Davis T M, Hill B D, Evans K J, et al. P300 event-related potentials differentiate better performing individuals with traumatic brain injury: a preliminary study of semantic processing[J]. J Head Trauma Rehabil, 2017, 32(4): E27-E36. |
[32] |
Ehlers M R, López Herrero C, Kastrup A. The P300 in middle cerebral artery strokes or hemorrhages: outcome predictions and source localization[J]. Clin Neurophysiol, 2015, 126(8): 1532-1538.
doi: 10.1016/j.clinph.2014.10.151 pmid: 25465358 |
[33] |
Li R, Song W Q, Du J B, et al. Connecting the P300 to the diagnosis and prognosis of unconscious patients[J]. Neural Regen Res, 2015, 10(3): 473-480.
doi: 10.4103/1673-5374.153699 |
[34] |
Zhang Y, Li R, Du J, et al. Coherence in P300 as a predictor for the recovery from disorders of consciousness[J]. Neurosci Let, 2017, 653:332-336.
doi: 10.1016/j.neulet.2017.06.013 |
[35] |
Cavinato M, Volpato C, Silvoni S, et al. Event-related brain potential modulation in patients with severe brain damage[J]. Clin Neurophysiol, 2011, 122(4): 719-724.
doi: 10.1016/j.clinph.2010.08.024 pmid: 21051281 |
[36] |
Dejanović M, Ivetić V, Nestorović V. The role of P300 event-related potentials in the cognitive recovery after the stroke[J]. Acta Neurol Belg, 2015, 115(4): 589-595.
doi: 10.1007/s13760-015-0428-x pmid: 25578637 |
[37] | 陈晓兰, 穆俊林, 陈兴时, 等. 轻型颅外伤患者的认知功能研究[J]. 中国民康医学, 2005, 17(3): 131-132. |
Chen X L, Mu J L, Chen X S. A study on cognition with minimal head injury patients[J]. Med J Chin People Health, 2005, 17(3): 131-132. | |
[38] |
Rousseff R T, Tzvetanov P, Atanassova P A, et al. Correlation between cognitive P300 changes and the grade of closed head injury[J]. Electromyogr Clin Neurophysiol, 2006, 46(5): 275-277.
pmid: 17059099 |
[39] |
Candrian G, Müller A, Dall'Acqua P, et al. Longitudinal study of a NoGo-P3 event-related potential component following mild traumatic brain injury in adults[J]. Ann Phys Rehabil Med, 2018, 61(1): 18-26.
doi: S1877-0657(17)30400-1 pmid: 28882543 |
[40] |
Head O, Ben-Dror S, Stern M J, et al. Event-related potentials as an index of cognitive function during recovery from severe closed head injury[J]. J Head Trauma Rehabil, 1998, 13(3): 15-30.
doi: 10.1097/00001199-199806000-00003 |
[41] |
Duszyk A, Dovgialo M, Pietrzak M, et al. Event-related potentials in the odd-ball paradigm and behavioral scales for the assessment of children and adolescents with disorders of consciousness: a proof of concept study[J]. Clin Neuropsychol, 2019, 33(2): 419-437.
doi: 10.1080/13854046.2018.1555282 pmid: 30657026 |
[1] | SHAO Weiting, LEI Jianghua. Effect of response interruption and redirection as a behavioral intervention on vocal stereotypy in children with autism spectrum disorder: a scoping review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 10-20. |
[2] | WANG Hangyu, GE Keke, FAN Yonghong, DU Lilu, ZOU Min, FENG Lei. Effect of active music therapy on cognitive function for older adults with cognitive impairment: a systematic review based on ICD-11 and ICF [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 36-43. |
[3] | WEN Jianing, JIN Qiuyan, ZHANG Qi, LI Jie, SI Qi. Effect of cognitively engaging physical activity on developing executive function of children and adolescents: a systematic review based on ICF [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 44-53. |
[4] | GE Keke, FAN Yonghong, WANG Hangyu, DU Lilu, LI Changjiang, ZOU Min. Health benefit of mindfulness intervention for older adults with insomnia disorders: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 54-60. |
[5] | ZHANG Jingya, ZOU Min, SUN Hongwei, SUN Changlong, ZHU Juntong. Effect of psychological intervention on anxiety or depression in children and adolescents with hearing impairment: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1004-1011. |
[6] | WANG Junyu, YANG Yong, YUAN Xun, XIE Ting, ZHUANG Jie. Effect of high-intensity interval training on executive function for healthy children and adolescents: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1012-1020. |
[7] | WEI Xiaowei, YANG Jian, WEI Chunyan. Psychological and behavioral benefits of adapted yoga exercise for children with autism spectrum disorder in special education schools: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1021-1028. |
[8] | YANG Yaru, YANG Jian. School-based physical activity-related health services and their health benefits within the World Health Organization health-promoting school framework: a systematic review of systematic reviews [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1040-1047. |
[9] | WANG He, HAN Liang, KAN Mengfan, YU Shaohong. Efficacy of electrical stimulation on shoulder-hand syndrome after stroke: a systematic review and meta-analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1048-1056. |
[10] | SHI Jiawei, LI Lingyu, YANG Haojie, WANG Qinlu, ZOU Haiou. Effect of preoperative prerehabilitation training on total knee arthroplasty: a systematic review of systematic reviews [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1057-1064. |
[11] | JIANG Changhao, HUANG Chen, GAO Xiaoyan, DAI Yuanfu, ZHAO Guoming. Effect of neurofeedback training on cognitive function in the elderly: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 903-909. |
[12] | WEI Xiaowei, YANG Jian, WEI Chunyan, HE Qiling. Adapted physical education programs for psychomotor development in school settings for children with intellectual and developmental disabilities: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 910-918. |
[13] | ZHANG Yuan, YANG Jian. School health services and effectiveness based on World Health Organization health-promoting school framework: a scoping review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 791-799. |
[14] | WANG Shaopu, CHEN Gang. Psychological-behavioral health services and its outcome based on World Health Organization health-promoting school framework: a systematic review of systematic reviews [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 800-807. |
[15] | JIANG Changhao, GAO Xiaoyan. Effect of acute physical activity on cognitive function in children: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(6): 667-672. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|