1 世界卫生组织. 世界残疾报告(概要)[J]. 中国康复理论与实践, 2011, 17(6): 501-507. 2 李晞,吴小高. 我国残疾人辅助器具服务工作的现状及展望[J]. 残疾人研究, 2016(3): 43-47. 3 SchofieldJ S, EvansK R, CareyJ P, et al. Applications of sensory feedback in motorized upper extremity prosthesis: a review [J]. Expert Rev Med Devices, 2014, 11(5): 499-511. 4 van TwillertS, GeertzenJ, HemmingaT, et al. Reconsidering evidence-based practice in prosthetic rehabilitation: a shared enterprise [J]. Prosthet Orthot Int, 2013, 37(3): 203-211. 5 SawersA, HahnM E, KellyV E, et al. Beyond componentry: How principles of motor learning can enhance locomotor rehabilitation of individuals with lower limb loss: a review [J]. J Rehabil Res Dev, 2013, 49(10): 1431-1442. 6 陈燕才. 单自由度肌电手与前臂真肢对比分析指导前臂截肢患者康复训练的研究[D]. 广州:南方医科大学, 2018. 7 WheatonL A. Neurorehabilitation in upper limb amputation: understanding how neurophysiological changes can affect functional rehabilitation [J]. J Neuroeng Rehabil, 2017, 14(1): 41-53. 8 MakinT R, CramerA O, ScholzJ, et al. Deprivation-related and use-dependent plasticity go hand in hand [J]. eLife, 2013, 2: e01273. 9 蒋光耀. 截肢后脑可塑性的磁共振成像研究[D]. 重庆:第三军医大学, 2016. 10 Janz VernoskiJ L, BjorklandJ R, KramerT J, et al. A simple non-invasive method for temporary knockdown of upper limb proprioception [J]. J Vis Exp, 2018(133): e57218. 11 ImamizuH, KawatoM. Brain mechanisms for predictive control by switching internal models: implications for higher-order cognitive functions [J]. Psychol Res, 2009, 73(4): 527-544. 12 WerhahnK J, MortensenJ, Kaelin-LangA, et al. Cortical excitability changes induced by deafferentation of the contralateral hemisphere [J]. Brain, 2002, 125(6): 1402-1413. 13 WerhahnK J, MortensenJ, BovenR W V, et al. Enhanced tactile spatial acuity and cortical processing during acute hand deafferentation [J]. Nat Neurosci, 2002, 5(10): 936-938. 14 ThomasF A, DietzV, ScharfenbergerT, et al. Cooperative hand movements: effect of a reduced afference on the neural coupling mechanism [J]. Neuroreport, 2018, 29(8): 650-654. 15 MizelleJ, OparahA, WheatonL. Reliability of visual and somatosensory feedback in skilled movement: the role of the cerebellum [J]. Brain Topogr, 2016, 29(1): 1-15. 16 BeauchampM S, LaconteS, YasarN. Distributed representation of single touches in somatosensory and visual cortex [J]. Hum Brain Mapp, 2009, 30(10): 3163-3171. 17 WitscherK. Assessment of reorganization in the sensorimotor cortex after upper limb amputation [J]. Clin Neurophysiol, 2001, 112(4): 627-635. 18 马春莲, 杨翼. 运动影响脑可塑性及其分子机制研究进展[J]. 中国运动医学杂志, 2015, 34(8): 810-814. 19 KobayashiM, ThéoretH, Pascual-LeoneA. Suppression of ipsilateral motor cortex facilitates motor skill learning [J]. Eur J Neurosci, 2009, 29(4): 833-836. 20 PhilipB A, FreyS H. Preserved grip selection planning in chronic unilateral upper extremity amputees [J]. Exp Brain Res, 2011, 214(3): 437-452. 21 FristonK J, DaunizeauJ, KilnerJ, et al. Action and behavior: a free-energy formulation [J]. Biol Cybern, 2010, 102(3): 227-260. 22 GiacomoR, LeonardoF. The mirror mechanism: recent findings and perspectives [J]. Philos Trans R Soc Lond B Biol Sci, 2014, 369(1644): 20130420. 23 BruckerB, EhlisA C,H?u?ingerF B, et al. Watching corresponding gestures facilitates learning with animations by activating human mirror-neurons: an fNIRS study [J]. Learning Instr, 2015, 36: 27-37. 24 ZultT, HowatsonG, KádárE E, et al. Role of the mirror-neuron system in cross-education [J]. Sports Med, 2014, 44(2): 159-178. 25 TaiY F, ScherflerC, BrooksD J, et al. The human premotor cortex is “mirror” only for biological actions [J]. Curr Biol, 2004, 14(2): 117-120. 26 CusackW F, MichaelC, SherylN, et al. Neural activation differences in amputees during imitation of intact versus amputee movements [J]. Front Hum Neurosci, 2012, 6: 182. 27 LawsonD T, CusackW F, LawsonR, et al. Influence of perspective of action observation training on residual limb control in naive prosthesis usage [J]. J Mot Behav, 2016, 48(5): 446-454. 28 王磊,孙海钰. 幻肢痛临床治疗新进展[J]. 中国民康医学, 2018, 30(4): 73-75. 29 田中义,郝涌刚,刘新伟. 幻肢痛发病机制研究及临床治疗新进展[J]. 中国康复医学杂志, 2016, 31(1): 110-114. 30 EyeshaH, RowleyC D, SharonG, et al. Patterns of myeloarchitecture in lower limb amputees: an MRI study [J]. Front Neurosci, 2015, 9: 15. 31 GuangyaoJ, XuntaoY, ChuanmingL, et al. The plasticity of brain gray matter and white matter following lower limb amputation [J]. Neural Plast, 2015, 2015: 823185. 32 SimoesE L, BramatiI, RodriguesE, et al. Functional expansion of sensorimotor representation and structural reorganization of callosal connections in lower limb amputees [J]. J Neurosci, 2012, 32 (9): 3211-3220. 33 KarlA, BirbaumerN, LutzenbergerW, et al. Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain [J]. J Neurosci, 2001, 21(10): 3609-3618. 34 SanneK, HeidiJ B, IreneT, et al. Reaffirming the link between chronic phantom limb pain and maintained missing hand representation [J]. Cortex, 2018, 106: 174-184. 35 AlviarM J, DungcaM, HaleT. Pharmacologic interventions for treating phantom limb pain [J]. Cochrane Database Syst Rev, 2016, 10: CD006380. 36 TungM L, MurphyI C, GriffinS C, et al. Observation of limb movements reduces phantom limb pain in bilateral amputees [J]. Ann Clin Transl Neurol, 2014, 1(9): 633-638. 37 MorganS J, FriedlyJ L, AmtmannD, et al. A cross-sectional assessment of factors related to pain intensity and pain interference in lower limb prosthesis users [J]. Arch Phys Med Rehabil, 2017, 98(1): 105-113. 38 GagnéM, HétuS, ReillyK T, et al. The map is not the territory: motor system reorganization in upper limb amputees [J]. Hum Brain Mapp, 2015, 32(4): 509-519. 39 WilliamsL, PirouzN, MizelleJ C, et al. Remodeling of cortical activity for motor control following upper limb loss [J]. Clin Neurophysiol, 2016, 127(9): 3128-3134. |