1 SminkeyL. Spinal cord injury [EB/OL]. (2013-12-02) [2016/10/13]. www.who.int/mediacentre/news/releases/2013/spinal-cord-injury-20131202/en/. 2 TazoeT, PerezM A. Effects of repetitive transcranial magnetic stimulation on recovery of function after spinal cord injury [J]. Arch Phys Med Rehabil, 2015, 96(4): S145-S155. 3 MukherjeeA, ChakravartyA. Spasticity Mechanisms: for the Clinician [J]. Front Neurol, 2010, 1(49): 1-10. 4 SköldC, LeviR, SeigerA. Spasticity after traumatic spinal cord injury: nature, severity, and location [J]. Arch Phys Med Rehabil, 1999, 80(12): 1548-1557. 5 MaynardF M, KarunasR S. Epidemiology of spasticity following traumatic spinal cord injury [J]. Arch Phys Med Rehabil, 1990, 71(8): 559-566. 6 DitunnoJ F, LittleJ W, TesslerA, et al. Spinal shock revisited: a four-phase model [J]. Spinal Cord, 2004, 42(7): 383-395. 7 AshbyP, VerrierM, LightfootE. Segmental reflex pathways in spinal shock and spinal spasticity in man [J]. J Neurol Neurosurg Psychiatry, 1974, 37(12): 1352-1360. 8 HiersemenzelL P, CurtA, DietzV. From spinal shock to spasticity neuronal adaptations to a spinal cord injury [J]. Neurology, 2000, 54(8): 1574-1582. 9 LiY, BennettD J. Persistent sodium and calcium currents cause plateau potentials in motoneurons of chronic spinal rats [J]. J Neurophysiol, 2003, 90(2): 857-869. 10 HeckmanC J, GorassiniM A, BennettD J. Persistent inward currents in motoneuron dendrites: implications for motor output [J]. Mucscle Nerve, 2005, 31(2): 135-156. 11 LiY, GorassiniM A, BennettD J. Role of persistent sodium and calcium currents in motoneuron firing and spasticity in chronic spinal rats [J]. J Neurophysiol, 2004, 91(2): 767-783. 12 MoritzA T, NewkirkG, PowersR K, et al. Facilitation of somatic calcium channels can evoke prolonged tail currents in rat hypoglossal motoneurons [J]. J Neurophysiol, 2007, 98(2): 1042-1047. 13 RudominP, SchmidtR F. Presynaptic inhibition in the vertebrate spinal cord revisited [J]. Exp Brain Res, 1999, 129(1): 1-37. 14 MailisA, AshbyP. Alterations in group Ia projections to motoneurons following spinal lesions in humans [J]. J Neurophysiol, 1990, 64(2): 637-647. 15 ShahaniB T, YoungR R. The flexor reflex in spasticity [D]. Chicago: Yearbook Medical Publishers, 1980. 16 RankM M, MurrayK C, StephensM J, et al. Adrenergic receptors modulate motoneuron excitability, sensory synaptic transmission and muscle spasms after chronic spinal cord injury [J]. J Neurophysiol, 2011, 105(1): 410-422. 17 Biering-SorensenB, KristensenI B, KjaerM, et al. Muscle after spinal cord injury [J]. Muscle Nerve, 2009, 40(4): 499-519. 18 ScelsiR, MarchettiC, PoggiP, et al. Muscle fiber type morphology and distribution in paraplegic patients with traumatic cord lesion. Histochemical and ultrastructural aspects of rectus femoris muscle [J]. Acta Neuropathol, 1982, 57(4): 243-248. 19 NielsenJ B, CroneC, HultbornH. The spinal pathophysiology of spasticity? From a basic science point of view [J]. Acta Physiol (Oxf), 2007, 189(2): 171-180. 20 LittleJ W, MicklessenP, UmlaufR, et al. Lower extremity manifestations of spasticity in chronic spinal cord injury [J]. Am J Phys Med Rehabil, 1989, 68(1): 32-36. 21 Beres-JonesJ A, JohnsonT D, HarkemaS J. Clonus after human spinal cord injury cannot be attributed solely to recurrent muscle-tendon stretch [J]. Exp Brain Res, 2003, 149(2): 222-236. 22 SchmitB D, BenzE N, RymerW Z. Reflex mechanisms for motor impairment in spinal cord injury [J]. Adv Exp Med Biol, 2002, 508(NA): 315-323. 23 D'AmicoJ M, CondliffeE G, MartinsK J B, et al. Recovery of neuronal and network excitability after spinal cord injury and implications for spasticity [J]. Front Integr Neurosci, 2014, 8(36): 1-24. 24 ElbasiounyS M, MorozD, BakrM M, et al. Management of spasticity after spinal cord injury: current techniques and future directions [J]. Neurorehabil Neural Repair, 2010, 24(1): 23-33. 25 BarkerA T, JalinousR, FreestonI L. Non-invasive magnetic stimulation of human motor cortex [J]. Lancet, 1985, 325(8437): 1106-1107. 26 ChervyakovA V, ChernyavskyA Y, SinitsynD O, et al. Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation [J]. Front Hum Neurosci, 2015, 9(303): 1-14. 27 KobayashiM, PascualleoneA. Transcranial magnetic stimulation in neurology [J]. Lancet Neurol, 2003, 2(3): 145-156. 28 BenitoJ, KumruH, MurlloN. Motor and gait improvement in patients with incomplete spinal cord injury induced by highfrequency repetitive transcranial magnetic stimulation [J]. Top Spinal Cord Inj Rehabil, 2012, 18(2): 106-112. 29 KumruH, MurilloN, Vidal SamsoJ, et al. Reduction of spasticity with repetitive transcranial magnetic stimulation in patients with spinal cord injury [J]. Neurorehabil Neural Repair, 2010, 24(5): 435-441. 30 MoriF, CodecàC, KusayanagiH, et al. Effects of intermittent theta burst stimulation on spasticity in patients with multiple sclerosis [J]. Eur J Neurol, 2010, 17(2): 295-300. 31 HuangY, EdwardsM J, RounisE, et al. Theta burst stimulation of the human motor cortex [J]. Neuron, 2005, 45(2): 201-206. 32 Di LazzaroV, PilatoF, DileoneM, et al. The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex [J]. J Physiol, 2008, 586(16): 3871-3879. 33 NardoneR, LlerY H, ThomschewskiA, et al. rTMS modulates reciprocal inhibition in patients with traumatic spinal cord injury [J]. Spinal Cord, 2014, 52(11): 831-835. 34 KorzhovaJ, SinitsynD, ChervyakovA, et al. Transcranial and spinal cord magnetic stimulation in treatment of spasticity. A literature review and meta-analysis [J]. Eur J Phys Rehabil Med, 2016, 54(1): 1-29. 35 NardoneR, HöllerY, BrigoF, et al. Descending motor pathways and cortical physiology after spinal cord injury assessed by transcranial magnetic stimulation: a systematic review [J]. Brain Res, 2015, 1619: 139-154. 36 KimD H, ShinJ C, JungS, et al. Effects of intermittent theta burst stimulation on spasticity after stroke [J]. Neuroreport, 2015, 26(10): 561-566. |