《中国康复理论与实践》 ›› 2024, Vol. 30 ›› Issue (5): 526-534.doi: 10.3969/j.issn.1006-9771.2024.05.005
徐冬艳, 王卫宁, 潘力, 刘罡, 刘加鹏, 吴毅, 朱玉连()
收稿日期:
2024-02-08
修回日期:
2024-04-09
出版日期:
2024-05-25
发布日期:
2024-06-12
通讯作者:
朱玉连(1969-),女,汉族,上海市人,博士,主任治疗师,博士生导师,主要研究方向:神经肌肉损伤后康复治疗技术和机制研究。E-mail: 作者简介:
徐冬艳(1984-),男,汉族,江苏淮安市人,硕士,主管治疗师,主要研究方向:脑卒中、脑外伤等神经系统损伤后运动功能障碍的评估和物理治疗技术。
基金资助:
XU Dongyan, WANG Weining, PAN Li, LIU Gang, LIU Jiapeng, WU Yi, ZHU Yulian()
Received:
2024-02-08
Revised:
2024-04-09
Published:
2024-05-25
Online:
2024-06-12
Contact:
ZHU Yulian, E-mail: Supported by:
摘要:
目的 探讨基于丰富环境理论的视觉和听觉等多感官反馈步态训练对脑卒中患者步行功能恢复的影响。
方法 2021年7月至2023年6月,选取复旦大学附属华山医院80例脑卒中患者,随机分为对照组(n = 40)和试验组(n = 40)。两组均接受卧位和坐位下常规康复治疗,每次40 min。对照组接受地面步行训练,每次20 min;试验组接受基于丰富环境理论的多感官反馈步态训练,每次20 min。分别在干预前和干预4周后,采用数字化运动监控跑台测量步速,健侧和患侧步长,髋、膝关节平均摆动角度和双侧负重对称性,采用Berg平衡量表(BBS)、Fugl-Meyer评定量表下肢部分(FMA-LE)和Barthel指数(BI)进行评定。
结果 干预后,两组髋关节平均摆动角度、健侧和患侧步长、步速明显改善(|t| >3.162, P < 0.01),且试验组均优于对照组(|t| > 2.568, P < 0.05);试验组膝关节平均摆动角度和双侧负重对称性明显改善(|t| > 3.249, P < 0.01);两组BBS、FMA-LE和BI评分明显提高(|t| > 3.569, P < 0.01),且试验组均优于对照组(|t| > 2.922, P < 0.05)。
结论 基于丰富环境理论的多感官反馈步态训练可以有效改善脑卒中患者的步行能力和平衡功能,增加日常生活独立性。
中图分类号:
徐冬艳, 王卫宁, 潘力, 刘罡, 刘加鹏, 吴毅, 朱玉连. 基于丰富环境理论的多感官反馈步态训练对脑卒中患者步行功能的效果[J]. 《中国康复理论与实践》, 2024, 30(5): 526-534.
XU Dongyan, WANG Weining, PAN Li, LIU Gang, LIU Jiapeng, WU Yi, ZHU Yulian. Effect of enriched environment theory-based multisensory feedback gait training on walking function in stroke patients[J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(5): 526-534.
表2
两组干预前后步态参数比较"
评价指标 | 组别 | n | 测试 | $\bar{x} \pm s$ | t值 | P值 |
---|---|---|---|---|---|---|
髋关节平均摆动角度/° | 对照组 | 40 | 前测 | 27.15±8.27 | -3.628 | 0.001 |
后测 | 32.72±9.09 | |||||
试验组 | 40 | 前测 | 28.60±6.29 | -5.965 | < 0.001 | |
后测 | 38.02±8.68 | |||||
干预前均值差 | -1.45±1.64 | -0.886 | 0.378 | |||
干预后均值差 | -5.30±1.99 | -2.667 | 0.009 | |||
膝关节平均摆动角度/° | 对照组 | 40 | 前测 | 30.81±11.10 | -1.901 | 0.065 |
后测 | 33.80±10.45 | |||||
试验组 | 40 | 前测 | 33.32±8.28 | -3.249 | 0.002 | |
后测 | 38.32±9.56 | |||||
干预前均值差 | -2.51±2.19 | -1.145 | 0.256 | |||
干预后均值差 | -4.52±2.24 | -2.020 | 0.047 | |||
健侧步长/cm | 对照组 | 40 | 前测 | 19.28±7.85 | -3.162 | 0.003 |
后测 | 23.58±8.11 | |||||
试验组 | 40 | 前测 | 18.20±5.31 | -10.879 | < 0.001 | |
后测 | 30.20±6.71 | |||||
干预前均值差 | 1.08±1.50 | 0.717 | 0.475 | |||
干预后均值差 | -6.62±1.66 | -3.978 | < 0.001 | |||
患侧步长/cm | 对照组 | 40 | 前测 | 24.88±9.65 | -5.340 | < 0.001 |
后测 | 31.05±8.64 | |||||
试验组 | 40 | 前测 | 25.18±8.00 | -8.662 | < 0.001 | |
后测 | 35.03±4.59 | |||||
干预前均值差 | -0.30±1.98 | -0.151 | 0.880 | |||
干预后均值差 | -3.98±1.55 | -2.568 | 0.013 | |||
步速/m·s-1 | 对照组 | 40 | 前测 | 1.65±0.32 | -6.620 | <0.001 |
后测 | 2.15±0.43 | |||||
试验组 | 40 | 前测 | 1.62±0.36 | -9.876 | < 0.001 | |
后测 | 2.38±0.36 | |||||
干预前均值差 | 0.03±0.08 | 0.363 | 0.717 | |||
干预后均值差 | -0.23±0.09 | -2.587 | 0.012 | |||
双侧负重对称性/% | 对照组 | 40 | 前测 | 3.22±2.21 | 0.676 | 0.503 |
后测 | 2.97±2.93 | |||||
试验组 | 40 | 前测 | 3.51±2.67 | 4.024 | < 0.001 | |
后测 | 1.92±1.11 | |||||
干预前均值差 | -0.29±0.55 | -0.529 | 0.598 | |||
干预后均值差 | 1.50±0.50 | 2.121 | 0.037 |
[1] | MOZAFFARIAN D, EMELIA J, ARNETT D K, et al. Heart Disease and Stroke Statistics-2016 Update[J]. Circulation, 2016, 133(4): e38-e360. |
[2] | VEERBEEK J M, POHL J, HELD J P O, et al. External validation of the early prediction of functional outcome after stroke prediction model for independent gait at 3 months after stroke[J]. Front Neurol, 2022, 13: 797791. |
[3] |
BRUNI M F, MELEGARI C, DE COLA M C, et al. What does best evidence tell us about robotic gait rehabilitation in stroke patients: a systematic review and meta-analysis[J]. J Clin Neurosci, 2018, 48: 11-17.
doi: S0967-5868(17)31166-9 pmid: 29208476 |
[4] | CHEN P S, ZHOU H W, LI T T, et al. Changes in gait characteristics of stroke patients with foot drop after the combination treatment of foot drop stimulator and moving treadmill training[J]. Neural Plast, 2021, 11: 9480957. |
[5] | HULLECK A A, MENOTH MOHAN D, ABDALLAH N, et al. Present and future of gait assessment in clinical practice: Towards the application of novel trends and technologies[J]. Front Med Technol, 2022, 4: 901331. |
[6] |
BALASUKUMARAN T, GOTTLIEB U, SPRINGER S. Spatiotemporal gait characteristics and ankle kinematics of backward walking in people with chronic ankle instability[J]. Sci Rep, 2020, 10(1): 11515.
doi: 10.1038/s41598-020-68385-5 pmid: 32661274 |
[7] |
NÜESCH C, OVERBERG J A, SCHWAMEDER H, et al. Repeatability of spatiotemporal, plantar pressure and force parameters during treadmill walking and running[J]. Gait Posture, 2018, 62: 117-123.
doi: S0966-6362(18)30156-5 pmid: 29547791 |
[8] |
SAHIN I E, GUCLU G A, YAZICI G, et al. The sensitivity and specificity of the balance evaluation systems test-BESTest in determining risk of fall in stroke patients[J]. Neurorehabilitation, 2019, 44(1): 67-77.
doi: 10.3233/NRE-182558 pmid: 30814369 |
[9] | 中华医学会神经病学分会. 中华医学会神经病学分会脑血管病学组. 中国各类主要脑血管病诊断要点2019[J]. 中华神经科杂志, 2019, 52(9): 710-715. |
Chinese Society of Neurology, Chinese Society of Stroke. Main diagnostic points of cerebrovascular diseases in China, 2019[J]. Chin J Neurol, 2019, 52(9): 710-715. | |
[10] | MOHAN D M, KHANDOKER A H, WASTI S A, et al. Assessment methods of post-stroke gait: a scoping review of technology-driven approaches to gait characterization and analysis[J]. Front Neurol, 2021, 12: 650024. |
[11] |
WREN T A L, TUCKER C A, RETHLEFSEN S A, et al. Clinical efficacy of instrumented gait analysis: systematic review 2020 update[J]. Gait Posture, 2020, 80: 274-279.
doi: S0966-6362(20)30181-8 pmid: 32563727 |
[12] | BRAVI M, MASSARONI C, SANTACATERINA F, et al. Validity analysis of Walker ViewTM Instrumented Treadmill for measuring spatiotemporal and kinematic gait parameters[J]. Sensors (Basel), 2021, 21(14): 4795. |
[13] |
MENTIPLAY B F, PERRATON L G, BOWER K J, et al. Gait assessment using the Microsoft Xbox One Kinect: concurrent validity and inter-day reliability of spatiotemporal and kinematic variables[J]. J Biomech, 2015, 48(10): 2166-2170.
doi: 10.1016/j.jbiomech.2015.05.021 pmid: 26065332 |
[14] |
CLARK R A, BRYANT A, PUA Y, et al. Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance[J]. Gait Posture, 2010, 31(3): 307-310.
doi: 10.1016/j.gaitpost.2009.11.012 pmid: 20005112 |
[15] |
ROGGIO F, RAVALLI S, MAUGERI G, et al. Technological advancements in the analysis of human motion and posture management through digital devices[J]. World J Orthop, 2021, 12(7): 467-484.
doi: 10.5312/wjo.v12.i7.467 pmid: 34354935 |
[16] | XIANG L L, WANG A, GU Y D, et al. Recent machine learning progress in lower limb running biomechanics with wearable technology: a systematic review[J]. Front Neurorobotics, 2022, 16: 913052. |
[17] | BHANDARKAR A C, RAVINDRA S, VISWESWARA R D. Spatiotemporal parameters of gait in terms of symmetry in asymptomatic individuals[J]. Indian J Phys Ther Res, 2023, 5(1): 94-101. |
[18] | BUCKLEY C, MICÓ-AMIGO M E, DUNNE-WILLOWS M, et al. Gait asymmetry post-stroke: determining valid and reliable methods using a single accelerometer located on the trunk[J]. Sensors, 2020, 20(1): 37. |
[19] |
KIM S H, HUIZENGA D E, HANDZIC I, et al. Relearning functional and symmetric walking after stroke using a wearable device: a feasibility study[J]. J Neuroeng Rehabil, 2019, 16(1): 106.
doi: 10.1186/s12984-019-0569-x pmid: 31455358 |
[20] |
WANG Y J, MUKAINO M, OHTSUKA K, et al. Gait characteristics of post-stroke hemiparetic patients with different walking speeds[J]. Int J Rehabil Res, 2020, 43(1): 69-75.
doi: 10.1097/MRR.0000000000000391 pmid: 31855899 |
[21] |
ALINGH J F, GROEN B E, KAMPHUIS J F, et al. Task-specific training for improving propulsion symmetry and gait speed in people in the chronic phase after stroke: a proof-of-concept study[J]. J Neuroeng Rehabil, 2021, 18(1): 69.
doi: 10.1186/s12984-021-00858-8 pmid: 33892754 |
[22] | HYUN S J, LEE J, LEE B H. The effects of sit-to-stand training combined with real-time visual feedback on strength, balance, gait ability, and quality of life in patients with stroke: a randomized controlled trial[J]. Int J Environ Res Public Health, 2021, 18(22): 12229. |
[23] |
MADHAVAN S, LIM H, SIVARAMAKRISHNAN A, et al. Effects of high intensity speed-based treadmill training on ambulatory function in people with chronic stroke: a preliminary study with long-term follow-up[J]. Sci Rep, 2019, 9(1): 1985.
doi: 10.1038/s41598-018-37982-w pmid: 30760772 |
[24] | JEON H J, HWANG B Y. Effect of bilateral lower limb strengthening exercise on balance and walking in hemiparetic patients after stroke: a randomized controlled trial[J]. Phys Ther Sci, 2018, 30(2): 277-281. |
[25] |
STEWART K C, CAURAUGH J H, SUMMERS J J. Bilateral movement training and stroke rehabilitation: a systematic review and meta-analysis[J]. J Neurol Sci, 2006, 244(1-2): 89-95.
doi: 10.1016/j.jns.2006.01.005 pmid: 16476449 |
[26] | DUBOIS O, ROBY-BRAMI A, PARRY R, et al. A guide to inter-joint coordination characterization for discrete movements: a comparative study[J]. Neuroeng Rehabil, 2023, 20(1): 132. |
[27] | VIVE S, ZÜGNER R 2 TRANBERG R, et al. Gait kinematics and spatiotemporal variables after enriched, task-specific therapy in the chronic phase after stroke. A Single-subject experimental design study[J]. Arch Clin Med Case Rep, 2021, 5(2): 325-341. |
[28] | CATY G D, DETREMBLEUR C, BLEYENHEUFT C, et al. Reliability of lower limb kinematics, mechanics and energetics during gait in patients after stroke[J]. J Rehabil Med, 2009, 41(6): 588. |
[29] | BELDA-LOIS J M, MENA-DEL HORNO S, BERMEJO-BOSCH I, et al. Rehabilitation of gait after stroke: a review towards a top-down approach[J]. J Neuroeng Rehabil, 2011, 8: 66. |
[30] | FIELD-FOTE E C, DIETZ V. Single joint perturbation during gait: preserved compensatory response pattern in spinal cord injured subjects[J]. Clin Neurophysiol, 2007, 118(7): 1607-1616. |
[31] | CHEN Y C, HUANG C C, ZHAO C G, et al. Visual effect on brain connectome that scales feedforward and feedback processes of aged postural system during unstable stance[J]. Front Aging Neurosci, 2021, 13: 679412. |
[32] |
KABBALIGERE R, LEE B C, LAYNE C S. Balancing sensory inputs: sensory reweighting of ankle proprioception and vision during a bipedal posture task[J]. Gait Posture, 2017, 52: 244-250.
doi: S0966-6362(16)30696-8 pmid: 27978501 |
[33] | SHEN J, GU X, YAO Y, et al. Effects of virtual reality-based exercise on balance in patients with stroke: a systematic review and meta-analysis[J]. Am J Phys Med Rehabil, 2023, 102(4): 316-322. |
[34] | QIN H, REID I, GORELIK A, et al. Environmental enrichment for stroke and other non-progressive brain injury[J]. Cochrane Database Syst Rev, 2021, 11(11): CD011879. |
[35] | ZHU Y T, ZHANG Q, XIE H Y, et al. Environmental enrichment combined with fasudil promotes motor function recovery and axonal regeneration after stroke[J]. Neural Regen Res, 2021, 16(12): 2512-2520. |
[36] | ARCHER D B, KANG N, MISRA G, et al. Visual feedback alters force control and functional activity in the visuomotor network after stroke[J]. Neuroimage Clin, 2018, 17: 505-517. |
[37] |
UNELL A, EISENSTAT Z M, BRAUN A, et al. Influence of visual feedback persistence on visuo-motor skill improvement[J]. Sci Rep, 2021, 11(1): 17347.
doi: 10.1038/s41598-021-96876-6 pmid: 34462516 |
[38] | SONG G B, RYU H J. Effects of gait training with rhythmic auditory stimulation on gait ability in stroke patients[J]. J Phys Ther Sci, 2016, 28(5): 1403-1406. |
[39] |
CHIA F S, KUYS S, LOW C N. Sensory retraining of the leg after stroke: systematic review and meta-analysis[J]. Clin Rehabil, 2019, 33(6): 964-979.
doi: 10.1177/0269215519836461 pmid: 30897960 |
[40] | YU Y, CHEN Y, LOU T, et al. Correlation between proprioceptive impairment and motor deficits after stroke: a meta-analysis review[J]. Front Neurol, 2022, 12: 688616. |
[41] |
ALSENOY K V, THOMSON A, BURNETT A. Reliability and validity of the Zebris FDM-THQ instrumented treadmill during running trials[J]. Sports Biomech, 2019, 18(5): 501-514.
doi: 10.1080/14763141.2018.1452966 pmid: 29785869 |
[42] |
KRISHNAN C. Learning and interlimb transfer of new gait patterns are facilitated by distributed practice across days[J]. Gait Posture, 2019, 70: 84-89.
doi: S0966-6362(18)31875-7 pmid: 30831544 |
[43] | PAN L, XU D Y, WANG W N, et al. Assessing bilateral ankle proprioceptive acuity in stroke survivors: an exploratory study[J]. Front Neurol, 2022, 13: 929310. |
[44] | SEO J W, KIM S G, KIM J I, et al. Principal characteristics of affected and unaffected side trunk movement and gait event parameters during hemiplegic stroke gait with IMU sensor[J]. Sensors (Basel), 2020, 20(24): 7338. |
[45] | TIAN D T, IZUMI S I, SUZUKI E. Modulation of interhemispheric inhibition between primary motor cortices induced by manual motor imitation: a transcranial magnetic stimulation study[J]. Brain Sci, 2021, 11(2): 266. |
[46] |
RODRIGUES L C, FARIAS N C, GOMES R P, et al. Feasibility and effectiveness of adding object-related bilateral symmetrical training to mirror therapy in chronic stroke: a randomized controlled pilot study[J]. Physiother Theory Pract, 2016, 32(2): 83-91.
doi: 10.3109/09593985.2015.1091872 pmid: 26756623 |
[47] | WANG C J, ZHANG Q, YU K W, et al. Enriched environment promoted cognitive function via bilateral synaptic remodeling after cerebral ischemia[J]. Front Neurol, 2019, 10: 1189. |
[48] | 徐冬艳, 王卫宁, 朱玉连, 等. 基于叠加效应的全身振动联合蹲起同步训练对脑卒中患者步行功能的影响[J]. 中国康复医学杂志, 2024, 39(2): 178-184. |
XU D Y, WANG W N, ZHU Y L, et al. Effects of whole-body vibration combined with squat-up synchronization training on walking function of stroke patients based on superposition effect[J]. Chin J Rehabil Med, 2024, 39(2): 178-184. | |
[49] |
WILLIAMS D S, MARTIN A E. Gait modification when decreasing double support percentage[J]. J Biomech, 2019, 92: 76-83.
doi: S0021-9290(19)30360-4 pmid: 31171369 |
[50] |
REDFERN M S, CHAMBERS A J, JENNINGS J R, et al. Sensory and motoric influences on attention dynamics during standing balance recovery in young and older adults[J]. Exp Brain Res, 2017, 235(8): 2523-2531.
doi: 10.1007/s00221-017-4985-5 pmid: 28528460 |
[51] |
DE KAM D, ROELOFS J M B, BRUIJNES A K B D, et al. The next step in understanding impaired reactive balance control in people with stroke: the role of defective early automatic postural responses[J]. Neurorehabil Neural Repair, 2017, 31(8): 708-716.
doi: 10.1177/1545968317718267 pmid: 28691582 |
[52] | CHENG H L, LIN C H, TSENG S H, et al. Effectiveness of repetitive transcranial magnetic stimulation combined with visual feedback training in improving neuroplasticity and lower limb function after chronic stroke: a pilot study[J]. Biology (Basel), 2023, 12(4): 515. |
[53] | LU Y, LIN Z Y, L M C, et al. Three-phase enriched environment improves post-stroke gait dysfunction via facilitating neuronal plasticity in the bilateral sensorimotor cortex: a multimodal MRI/PET analysis in rats[J]. [ahead of print]. Neurosci Bull, 2023. doi: 10.1007/s12264-023-01155-1. |
[1] | 韦添元, 林煜凡, 何怡, 宋明洁, 李晁金子, 张庆苏, 杜晓霞. 计算机辅助训练对脑卒中后构音障碍患者的效果[J]. 《中国康复理论与实践》, 2024, 30(5): 520-525. |
[2] | 熊杏秀, 张正辉, 邓春燕, 李云波, 陈镇鹏, 李元杰, 宋景. 减重结合功能性电刺激对脑卒中患者下肢运动功能的疗效[J]. 《中国康复理论与实践》, 2024, 30(5): 554-559. |
[3] | 黄崧华, 凌骏麒, 高天昊, 黄仪佳, 白玉龙. 动态腕手矫形器结合改良强制性运动疗法对脑卒中偏瘫患者上肢和手功能障碍的效果[J]. 《中国康复理论与实践》, 2024, 30(5): 606-612. |
[4] | 郑建玲, 刘惠林, 朱琳, 顾彬, 颜如秀, 赵圻, 宋鲁平. 早期悬吊保护下智能助行训练对脑卒中后运动和行走功能的效果[J]. 《中国康复理论与实践》, 2024, 30(4): 431-436. |
[5] | 粟昭隐, 康巍瀚, 刘亚涛, 吕媛, Michael NERLICH. 中国中老年人身体活动水平与脑卒中发生的相关性:基于CHARLS数据[J]. 《中国康复理论与实践》, 2024, 30(4): 449-453. |
[6] | 刘杏, 周玉梅, 徐惠丽, 彭剑英, 谢喆书, 邢利民, 赵军. 中青年重症脑卒中患者主要照顾者预期性悲伤影响因素的结构方程模型构建[J]. 《中国康复理论与实践》, 2024, 30(4): 454-461. |
[7] | 陈园月, 李加斌, 蒯凤, 彭丽丽, 项洁. 多通道功能性电刺激结合任务导向训练对脑卒中上肢偏瘫患者脑功能网络的即刻影响[J]. 《中国康复理论与实践》, 2024, 30(4): 462-467. |
[8] | 魏辰, 王子贤, 李淑璠, 王芃, 贾舒祺, 田英. 镜像疗法对脑卒中患者上肢运动功能和日常生活活动能力影响的Meta分析[J]. 《中国康复理论与实践》, 2024, 30(3): 281-291. |
[9] | 刘换, 韩雪, 宋佳苧, 娄晓乐, 徐磊. 体位限制下康复机器人训练对脑卒中后肩关节半脱位患者上肢功能的效果[J]. 《中国康复理论与实践》, 2024, 30(3): 303-309. |
[10] | 于春洋, 刘然, 赵依双, 郭帅, 周亚楠, 李丽, 张皓. 虚拟现实联合跑台训练对脑卒中患者平衡功能和步行能力的效果[J]. 《中国康复理论与实践》, 2024, 30(3): 310-315. |
[11] | 梁明, 魏珍, 祖合热·肉孜, 李金贤. Passy-Muir说话瓣膜对脑卒中气管切开患者吞咽生物力学的作用[J]. 《中国康复理论与实践》, 2024, 30(3): 326-332. |
[12] | 穆姿辰, 唐强, 史云秋, 王艳, 朱淑伟, 庄亚楠, 徐丹双, 李宏玉, 李保龙, 张春艳, 袁孟珂. 丰富环境训练结合头穴丛刺对孤独症谱系障碍模型大鼠行为的影响[J]. 《中国康复理论与实践》, 2024, 30(2): 176-182. |
[13] | 高玲, 褚凤明, 贾凡, 陈杰, 张明. 基于视听觉和运动反馈的脑机接口结合经颅直流电刺激对脑卒中患者上肢功能的效果[J]. 《中国康复理论与实践》, 2024, 30(2): 202-209. |
[14] | 龚翔, 王梦寰, 吴存书, 陈珺雯, 肖悦, 杨云, 孙婉婷, 鲁俊, 许光旭. 前庭电刺激对脑卒中患者侧倾功能障碍的效果[J]. 《中国康复理论与实践》, 2024, 30(2): 210-216. |
[15] | 林娜, 高菡璐, 卢惠苹, 陈燕清, 郑军凡, 陈述荣. 虚拟现实技术对脑卒中上肢功能影响的弥散张量成像研究[J]. 《中国康复理论与实践》, 2024, 30(1): 61-67. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|