《中国康复理论与实践》 ›› 2024, Vol. 30 ›› Issue (4): 437-448.doi: 10.3969/j.issn.1006-9771.2024.04.009
收稿日期:
2023-12-25
修回日期:
2024-03-05
出版日期:
2024-04-25
发布日期:
2024-05-08
通讯作者:
马丽虹(1975-),女,山东曲阜市人,硕士,教授,主要研究方向:神经系统疾病康复。E-mail: 作者简介:
崔甜甜(2000-),女,汉族,山东枣庄市人,硕士研究生,主要研究方向:神经系统疾患的康复研究。
基金资助:
CUI Tiantian1, YANG Yulin1, CUI Tengteng2, MA Lihong1()
Received:
2023-12-25
Revised:
2024-03-05
Published:
2024-04-25
Online:
2024-05-08
Contact:
MA Lihong, E-mail: Supported by:
摘要:
目的 系统评价上肢强化训练对脑瘫儿童上肢运动功能的效果。
方法 构建PICO架构,检索PubMed、Embase、Cochrane Library、Scopus、Web of Science、中国知网、中国生物医学文献数据库、维普和万方数据库,搜集关于上肢强化训练改善脑瘫儿童上肢运动功能的随机对照试验,检索时限均为2010年1月至2024年3月。按照Cochrane系统评价手册和物理治疗证据数据库量表对纳入文献进行质量评价,由2名研究者独立筛选文献、提取资料并评价纳入研究的偏倚风险后,采用RevMan 5.4和Stata 17.0进行网状Meta分析。
结果 共纳入27篇文献,包括1 173例患者,涉及3种上肢强化训练。强制性运动疗法、改良强制性运动疗法和手-臂双侧强化训练均可提高辅助手功能评分与Peabody精细运动功能评分;强制性运动疗法和改良强制性运动疗法可提高上肢技能质量量表评分;手-臂双侧强化训练可提高儿童生活功能量表评分。在提高辅助手功能、上肢技能质量量表评分和Peabody精细运动功能评分方面,强制性运动疗法为最佳干预方式;在提高儿童生活功能量表评分方面,手-臂双侧强化训练为最佳干预方式。
结论 上肢强化训练可显著改善脑瘫儿童的上肢运动功能、精细运动功能和日常生活活动能力,强制性运动疗法在改善上肢运动功能和精细运动功能方面效果最好,手-臂双侧强化训练在提高日常生活活动能力方面疗效最佳。
中图分类号:
崔甜甜, 杨钰琳, 崔腾腾, 马丽虹. 不同强化训练对脑性瘫痪儿童上肢运动功能效果的网状Meta分析[J]. 《中国康复理论与实践》, 2024, 30(4): 437-448.
CUI Tiantian, YANG Yulin, CUI Tengteng, MA Lihong. Effect of different intensive training on upper limb motor function in children with cerebral palsy: a network meta-analysis[J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(4): 437-448.
表2
纳入文献的PEDro量表评分结果"
纳入文献 | 资格 标准 | 随机 分配 | 分配 隐藏 | 基线 均衡 | 被试 施盲 | 治疗师施盲 | 评估者施盲 | 被试流失率≤15% | 意向性分析 | 组间统计比较 | 点估计和变异性测量 | 总分 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Abd El Wahab等[ | √ | √ | √ | √ | √ | √ | √ | 6 | ||||
Fedrizzi等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 8 | ||
Figueiredo等[ | √ | √ | √ | √ | √ | √ | √ | 6 | ||||
李巧秀[ | √ | √ | √ | √ | √ | √ | √ | 6 | ||||
孙瑞雪等[ | √ | √ | √ | √ | √ | √ | √ | 6 | ||||
王臣等[ | √ | √ | √ | √ | √ | √ | √ | 6 | ||||
Araneda等[ | √ | √ | √ | √ | √ | √ | √ | 6 | ||||
Araneda等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 9 | |
Bleyenheuft等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 9 | |
Saussez等[ | √ | √ | √ | √ | √ | √ | √ | √ | 7 | |||
De Brito Brandão等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 8 | ||
Eliasson等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 8 | ||
Ramey等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 8 | ||
Chen等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 10 |
Gordon等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 8 | ||
Sakzewski等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 8 | ||
Zafer等[ | √ | √ | √ | √ | √ | √ | √ | 6 | ||||
Choudhary等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 9 | |
Hoare等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 10 |
Hwang等[ | √ | √ | √ | √ | √ | √ | √ | √ | 7 | |||
Mohamed等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 9 | |
刘鹏等[ | √ | √ | √ | √ | √ | √ | √ | √ | 7 | |||
Bingöl等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 10 |
Bingöl等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 9 | |
Chamudot等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 8 | ||
Deppe等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 9 | |
Sakzewski等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 9 |
表3
纳入文献基本特征"
纳入文献 | 国家 | 场所 | n | 年龄/岁 (试验组/对照组) | 干预措施 | 干预 周期 | 结局 指标 | ||
---|---|---|---|---|---|---|---|---|---|
试验组 | 对照组 | 试验组 | 对照组 | ||||||
Abd El Wahab等[ | 埃及 | 医院 | 15 | 15 | 3.64±0.48/4.11±0.93 | HABIT | CRT | 12周 | ① |
Fedrizzi等[ | 意大利 | 机构 | 39(T1) | 33 | 2~8 | mCIMT(T1) | CRT | 10周 | ② |
33(T2) | HABIT(T2) | ||||||||
Figueiredo等[ | 巴西 | 机构 | 19 | 20 | 9.42±3.58/9.67±4.16 | HABIT | CRT | 3周 | ③ |
李巧秀[ | 中国 | 医院 | 43 | 43 | 4.3±0.8 | HABIT | CRT | 8周 | ①②③ |
孙瑞雪等[ | 中国 | 医院 | 20 | 20 | 2.5~6 | HABIT | CRT | 12周 | ①②③ |
王臣等[ | 中国 | 医院 | 45 | 50 | 4.64±2.15/4.68±2.26 | HABIT | CRT | 8周 | ① |
Araneda等[ | 比利时 | 实验室 | 16 | 15 | 9.3±4.25/9.3±5.3 | HABIT | CRT | 2周 | ④ |
Araneda等[ | 比利时 | 医院 | 25 | 24 | 3±3.46/2.76±3.51 | HABIT | CRT | 2周 | ③④ |
Bleyenheuft等[ | 比利时 | 医院 | 12 | 12 | 8.9 ± 1.7/8.5 ± 1.7 | HABIT | CRT | 2周 | ③④ |
Saussez等[ | 比利时 | 实验室 | 20 | 20 | 9.1±2.9/9.0±3.1 | HABIT | CRT | 2周 | ③④ |
De Brito Brandão等[ | 巴西 | 机构 | 8 | 7 | 5.5±1.92/6.58±1.11 | CIMT | CRT | 2周 | ③ |
Eliasson等[ | 瑞典 | 医院 | 18 | 13 | 0.5±0.49/0.42±0.46 | CIMT | CRT | 6周 | ④ |
Ramey等[ | 美国 | 医院 | 25 | 23 | 3.4±1.2/4.5±2.1 | CIMT | CRT | 4周 | ①②③④ |
Chen等[ | 中国 | 医院 | 24 | 23 | 8.7±1.9/8.8±2.0 | CIMT | CRT | 4周 | ① |
Gordon等[ | 美国 | 实验室 | 21 | 21 | 6.3±2.2/6.4±1.11 | CIMT | HABIT | 3周 | ②④ |
Sakzewski等[ | 澳大利亚 | 实验室 | 32 | 32 | 10.2±2.7 | CIMT | HABIT | 3周 | ④ |
Zafer等[ | 巴基斯坦 | 研究所 | 9 | 9 | 8.75±3.06 | CIMT | HABIT | 2周 | ② |
Choudhary等[ | 印度 | 医院 | 16 | 15 | 4.88±5.11/5.22±5.2 | mCIMT | CRT | 4周 | ② |
Hoare等[ | 澳大利亚 | 诊所 | 17 | 17 | 3±4.5/2.97±4.73 | mCIMT | CRT | 8周 | ②③④ |
Hwang等[ | 韩国 | 医院 | 12 | 12 | 1.33±2.42/1.44±1.79 | mCIMT | CRT | 3周 | ①③ |
Mohamed等[ | 埃及 | 医院 | 20 | 20 | 7.7±0.86/7.75±0.91 | mCIMT | CRT | 12周 | ② |
刘鹏等[ | 中国 | 医院 | 20 | 20 | 2.94±0.88/3.04±0.86 | mCIMT | CRT | 12周 | ①② |
Bingol等[ | 土耳其 | 学校 | 16 | 16 | 10.75±2.95/10.12±2.96 | mCIMT | HABIT | 10周 | ② |
Bingol等[ | 土耳其 | 学校 | 15 | 15 | 8.73±1.66/8.33±1.44 | mCIMT | HABIT | 16周 | ② |
Chamudot等[ | 以色列 | 机构 | 17 | 16 | 0.93±0.64 | mCIMT | HABIT | 8周 | ④ |
Deppe等[ | 德国 | 机构 | 24 | 18 | 5.83±1.83/6.83±2.08 | mCIMT | HABIT | 4周 | ③④ |
Sakzewski等[ | 澳大利亚 | 医院 | 32 | 31 | 10.1±2.6/10.2±2.6 | mCIMT | HABIT | 2周 | ④ |
[1] |
MCGUIRE D O, TIAN L H, YEARGIN-ALLSOPP M, et al. Prevalence of cerebral palsy, intellectual disability, hearing loss, and blindness, National Health Interview Survey, 2009-2016[J]. Disabil Health J, 2019, 12(3): 443-451.
doi: S1936-6574(19)30005-6 pmid: 30713095 |
[2] |
DAMIANO D L, LONGO E. Early intervention evidence for infants with or at risk for cerebral palsy: an overview of systematic reviews[J]. Dev Med Child Neurol, 2021, 63(7): 771-784.
doi: 10.1111/dmcn.14855 pmid: 33825199 |
[3] |
OUYANG R G, YANG C N, QU Y L, et al. Effectiveness of hand-arm bimanual intensive training on upper extremity function in children with cerebral palsy: a systematic review[J]. Eur J Paediatr Neurol, 2020, 25: 17-28.
doi: 10.1016/j.ejpn.2019.12.017 |
[4] | BLEYENHEUFT Y, ARNOULD C, BRANDãO M, et al. Hand and arm bimanual intensive therapy including lower extremity (HABIT-ILE) in children with cerebral palsy: a randomized trial[J]. Dev Med Child Neurol, 2014, 56: 83-84. |
[5] |
KLEPPER S E, KRASINSKI D C, GILB M C, et al. Comparing unimanual and bimanual training in upper extremity function in children with unilateral cerebral palsy[J]. Pediatr Phys Ther, 2017, 29(4): 288-306.
doi: 10.1097/PEP.0000000000000438 pmid: 28953170 |
[6] | REGALADO A, DECKER B, FLAHERTY B M, et al. Effectiveness of constraint-induced movement therapy for children with hemiparesis associated with cerebral palsy: a systematic review[J]. Am J Occup Ther, 2023, 77(3): 7703205160. |
[7] |
ALAHMARI K, TEDLA J S, SANGADALA D R, et al. Effectiveness of hand-arm bimanual intensive therapy on hand function among children with unilateral spastic cerebral palsy: a meta-analysis[J]. Eur Neurol, 2020, 83(2): 131-137.
doi: 10.1159/000507325 pmid: 32348996 |
[8] |
GORDON A M. To constrain or not to constrain, and other stories of intensive upper extremity training for children with unilateral cerebral palsy[J]. Dev Med Child Neurol, 2011, 53(4): 56-61.
doi: 10.1111/dmcn.2011.53.issue-s4 |
[9] |
HUNG Y C, SPINGARN A, FRIEL K M, et al. Intensive unimanual training leads to better reaching and head control than bimanual training in children with unilateral cerebral palsy[J]. Phys Occup Ther Pediatr, 2020, 40(5): 491-505.
doi: 10.1080/01942638.2020.1712513 |
[10] |
FRIEL K M, FERRE C L, BRANDAO M, et al. Improvements in upper extremity function following intensive training are independent of corticospinal tract organization in children with unilateral spastic cerebral palsy: a clinical randomized trial[J]. Front Neurol, 2021, 12: 660780.
doi: 10.3389/fneur.2021.660780 |
[11] |
MAILLEUX L, DE BEUKELAER N, CARBONE M B, et al. Early interventions in infants with unilateral cerebral palsy: a systematic review and narrative synthesis[J]. Res Dev Disabil, 2021, 117: 104058.
doi: 10.1016/j.ridd.2021.104058 |
[12] | World Heath Organization. International Classification of Diseases 11th Revision[EB/OL]. (2019-10-17) [2021-06-16]. https://int/browse11/1-m/en. |
[13] | 世界卫生组织. 国际功能、残疾和健康分类(国际中文增补版)[M]. 邱卓英,译. 日内瓦: 世界卫生组织, 2015. |
World Health Organization. International Classification of Functioning, Disability and Health (Chinese Version)[M]. QIU Z Y, trans trans. Geneva: World Health Organization, 2015. | |
[14] |
BRIGNARDELLO-PETERSEN R, GUYATT G H, MUSTAFA R A, et al. GRADE guidelines 33: addressing imprecision in a network meta-analysis[J]. J Clin Epidemiol, 2021, 139: 49-56.
doi: 10.1016/j.jclinepi.2021.07.011 |
[15] |
ABD EL WAHAB M, HAMED N E S. Effect of hand-arm bimanual intensive therapy on fine-motor performance in children with hemiplegic cerebral palsy[J]. Egypt J Med Hum Genet, 2015, 16(1): 55-59.
doi: 10.1016/j.ejmhg.2014.07.005 |
[16] |
FEDRIZZI E, ROSA-RIZZOTTO M, TURCONI A C, et al. Unimanual and bimanual intensive training in children with hemiplegic cerebral palsy and persistence in time of hand function improvement: 6-month follow-up results of a multisite clinical trial[J]. J Child Neurol, 2013, 28(2): 161-175.
doi: 10.1177/0883073812443004 pmid: 22580904 |
[17] |
FIGUEIREDO P R P, MANCINI M C, FEITOSA A M, et al. Hand-arm bimanual intensive therapy and daily functioning of children with bilateral cerebral palsy: a randomized controlled trial[J]. Dev Med Child Neurol, 2020, 62(11): 1274-1282.
doi: 10.1111/dmcn.v62.11 |
[18] | 李巧秀. 上肢双侧强化锻炼在偏瘫脑瘫患儿中的应用效果[J]. 中国实用神经疾病杂志, 2017, 20(8): 46-48. |
LI Q X. Effect of bilateral strengthening exercise of the upper limbs in children with hemiplegic cerebral palsy[J]. Chin J Practical Nerv Dis, 2017, 20(8): 46-48. | |
[19] |
孙瑞雪, 姜志梅, 徐磊, 等. 手-臂双侧强化训练对偏瘫脑瘫儿童上肢功能及日常活动能力的影响[J]. 中国儿童保健杂志, 2016, 24(1): 108-110.
doi: 10.11852/zgetbjzz2016-24-01-34 |
SUN R X, JIANG Z M, XU L, et al. Effect of hand-arm bimanual intensive training on the children's upper limb function and ability of daily activity with hemiplegic cerebral palsy[J]. Chin J Child Health Care, 2016, 24(1): 108-110. | |
[20] | 王臣, 易颖, 茅旭辉, 等. 团体式手-臂双侧强化干预对脑瘫患儿运动功能和功能独立性的影响[J]. 全科医学临床与教育, 2021, 19(2): 165-167. |
WANG C, YI Y, MAO X H, et al. Effects of group-based hand-arm bimanual intensive training on motor function and functional independence in children with cerebral palsy[J]. Clin Edu Gen Pract, 2021, 19(2): 165-167. | |
[21] |
ARANEDA R, HERMAN E, DELCOUR L, et al. Mirror movements after bimanual intensive therapy in children with unilateral cerebral palsy: a randomized controlled trial[J]. Dev Med Child Neurol, 2022, 64(11): 1383-1391.
doi: 10.1111/dmcn.v64.11 |
[22] |
ARANEDA R, EBNER-KARESTINOS D, PARADIS J, et al. Changes induced by early hand-arm bimanual intensive therapy including lower extremities in young children with unilateral cerebral palsy: a randomized clinical trial[J]. JAMA Pediatr, 2024, 178(1): 19-28.
doi: 10.1001/jamapediatrics.2023.4809 |
[23] |
BLEYENHEUFT Y, ARNOULD C, BRANDAO M B, et al. Hand and arm bimanual intensive therapy including lower extremity (HABIT-ILE) in children with unilateral spastic cerebral palsy: a randomized trial[J]. Neurorehabil Neural Repair, 2015, 29(7): 645-657.
doi: 10.1177/1545968314562109 pmid: 25527487 |
[24] |
SAUSSEZ G, BAILLY R, ARANEDA R, et al. Efficacy of integrating a semi-immersive virtual device in the HABIT-ILE intervention for children with unilateral cerebral palsy: a non-inferiority randomized controlled trial[J]. J NeuroEng Rehabil, 2023, 20(1): 98-113.
doi: 10.1186/s12984-023-01218-4 pmid: 37516873 |
[25] |
DE BRITO BRANDÃO M, MANCINI M C, VAZ D V, et al. Adapted version of constraint-induced movement therapy promotes functioning in children with cerebral palsy: a randomized controlled trial[J]. Clin Rehabil, 2010, 24(7): 639-647.
doi: 10.1177/0269215510367974 pmid: 20530645 |
[26] |
ELIASSON A C, NORDSTRAND L, EK L, et al. The effectiveness of Baby-CIMT in infants younger than 12 months with clinical signs of unilateral-cerebral palsy; an explorative study with randomized design[J]. Res Dev Disabil, 2018, 72: 191-201.
doi: 10.1016/j.ridd.2017.11.006 |
[27] | RAMEY S L, DELUCA S C, STEVENSON R D, et al. Constraint-induced movement therapy for cerebral palsy: a randomized trial[J]. Pediatrics, 2021, 148(5): e2020033878. |
[28] |
CHEN C L, KANG L J, HONG W H, et al. Effect of therapist-based constraint-induced therapy at home on motor control, motor performance and daily function in children with cerebral palsy: a randomized controlled study[J]. Clin Rehabil, 2013, 27(3): 236-245.
doi: 10.1177/0269215512455652 |
[29] |
GORDON A M, HUNG Y C, BRANDAO M, et al. Bimanual training and constraint-induced movement therapy in children with hemiplegic cerebral palsy: a randomized trial[J]. Neurorehabil Neural Repair, 2011, 25(8): 692-702.
doi: 10.1177/1545968311402508 pmid: 21700924 |
[30] |
SAKZEWSKI L, ZIVIANI J, ABBOTT D F, et al. Equivalent retention of gains at 1 year after training with constraint-induced or bimanual therapy in children with unilateral cerebral palsy[J]. Neurorehabil Neural Repair, 2011, 25(7): 664-671.
doi: 10.1177/1545968311400093 pmid: 21427273 |
[31] | ZAFER H, AMJAD I, MALIK A N, et al. Effectiveness of constraint-induced movement therapy as compared to bimanual therapy in upper motor function outcome in child with hemiplegic cerebral palsy[J]. Pak J Med Sci, 2016, 32(1): 181-184. |
[32] |
CHOUDHARY A, GULATI S, KABRA M, et al. Efficacy of modified constraint-induced movement therapy in improving upper limb function in children with hemiplegic cerebral palsy: a randomized controlled trial[J]. Brain Dev, 2013, 35(9): 870-876.
doi: 10.1016/j.braindev.2012.11.001 |
[33] |
HOARE B, IMMS C, VILLANUEVA E, et al. Intensive therapy following upper limb botulinum toxin A injection in young children with unilateral cerebral palsy: a randomized trial[J]. Dev Med Child Neurol, 2013, 55(3): 238-247.
doi: 10.1111/dmcn.12054 pmid: 23236956 |
[34] |
HWANG Y S, KWON J Y. Effects of modified constraint-induced movement therapy in real-world arm use in young children with unilateral cerebral palsy: a single-blind randomized trial[J]. Neuropediatrics, 2020, 51(4): 259-266.
doi: 10.1055/s-0040-1702220 pmid: 32143221 |
[35] | MOHAMED R A, YOUSEF A M, RADWAN N L, et al. Efficacy of different approaches on quality of upper extremity function, dexterity and grip strength in hemiplegic children: a randomized controlled study[J]. Eur Rev Med Pharmacol Sci, 2021, 25(17): 5412-5423. |
[36] |
刘鹏, 苏春, 邵磊, 等. 基于中文版上肢技巧质量测试的改良强制性运动疗法对偏瘫型脑性瘫痪儿童上肢功能的效果[J]. 中国康复理论与实践, 2022, 28(8): 897-902.
doi: 10.3969/j.issn.1006-9771.2022.08.004 |
LIU P, SU C, SHAO L, et al. Effect of modified constraint-induced movement therapy based on Chinese version of Quality of Upper Extremity Skills Test on upper limb function for children with hemiplegic cerebral palsy[J]. Chin J Rehabil Theory Pract, 2022, 28(8): 897-902. | |
[37] |
BINGÖL H, GÜNEL M K. Comparing the effects of modified constraint-induced movement therapy and bimanual training in children with hemiplegic cerebral palsy mainstreamed in regular school: a randomized controlled study[J]. Arch Pediatr, 2022, 29(2): 105-115.
doi: 10.1016/j.arcped.2021.11.017 |
[38] |
BINGÖL H, KEREM GUNEL M, ALKAN H. The efficacy of two models of intensive upper limb training on health-related quality of life in children with hemiplegic cerebral palsy mainstreamed in regular schools: a double-blinded, randomized controlled trial[J]. Physiother Theory Pract, 2023, 39(1): 10-25.
doi: 10.1080/09593985.2021.1999355 |
[39] | CHAMUDOT R, PARUSH S, RIGBI A, et al. Effectiveness of modified constraint-induced movement therapy compared with bimanual therapy home programs for infants with hemiplegia: a randomized controlled trial[J]. Am J Occup Ther, 2018, 72(6):1-9. |
[40] |
DEPPE W, THUEMMLER K, FLEISCHER J, et al. Modified constraint-induced movement therapy versus intensive bimanual training for children with hemiplegia: a randomized controlled trial[J]. Clin Rehabil, 2013, 27(10): 909-920.
doi: 10.1177/0269215513483764 |
[41] |
SAKZEWSKI L, PROVAN K, ZIVIANI J, et al. Comparison of dosage of intensive upper limb therapy for children with unilateral cerebral palsy: How big should the therapy pill be?[J]. Res Dev Disabil, 2015, 37(2): 9-16.
doi: 10.1016/j.ridd.2014.10.050 |
[42] |
YANG F A, LEE T H, HUANG S W, et al. Upper limb manual training for children with cerebral palsy: a systematic review and network meta-analysis of randomized controlled trials[J]. Clin Rehabil, 2023, 37(4): 516-533.
doi: 10.1177/02692155221137698 |
[43] | HARIKISHOR BABU J, RAJA SRINIVAS M, KOWSHIK, et al. Effectiveness of modified constraint-induce movement therapy compared to hand-arm bimanual intensive therapy on quality of upper extremity function in hemiplegic cerebral palsy children: an experimental study[J]. NeuroQuantology, 2023, 21(1): 888-925. |
[44] |
REID L B, ROSE S E, BOYD R N. Rehabilitation and neuroplasticity in children with unilateral cerebral palsy[J]. Nat Rev Neurol, 2015, 11(7): 390-400.
doi: 10.1038/nrneurol.2015.97 pmid: 26077839 |
[45] |
SAKZEWSKI L, ZIVIANI J, BOYD R N. Efficacy of upper limb therapies for unilateral cerebral palsy: a meta-analysis[J]. Pediatrics, 2014, 133(1): e175-e204.
doi: 10.1542/peds.2013-0675 |
[46] | DIONISIO M C, TERRILL A L. Constraint-induced movement therapy for infants with or at risk for cerebral palsy: a scoping review[J]. Am J Occup Ther, 2022, 76(2): 7602205120. |
[47] | HOARE B, WALLEN M, THORLEY M, et al. Constraint-induced movement therapy in children with unilateral cerebral palsy: a cochrane review update[J]. Dev Med Child Neurol, 2019, 61(4): 43. |
[48] | SHARMA P, GUPTA M, KALRA R. Recent advancements in interventions for cerebral palsy: a review[J]. J Neurorestoratol, 2023, 11(3): 100071. |
[49] | GULRANDHE P, ACHARYA S, PATEL M, et al. Pertinence of constraint-induced movement therapy in neurological rehabilitation: a scoping review[J]. Cureus, 2023, 15(9): e45192. |
[50] |
BLEYENHEUFT Y, EBNER-KARESTINOS D, SURANA B, et al. Hand-arm bimanual intensive therapy including the lower extremities (HABIT-ILE) for children with bilateral cerebral palsy in GMFCS levels II to IV[J]. Dev Med Child Neurol, 2016, 56(3): 290.
doi: 10.1111/dmcn.2014.56.issue-3 |
[51] |
GORDON A M, CHARLES J, WOLF S L. Methods of constraint-induced movement therapy for children with hemiplegic cerebral palsy: development of a child-friendly intervention for improving upper-extremity function[J]. Arch Phys Med Rehabil, 2005, 86(4): 837-844.
doi: 10.1016/j.apmr.2004.10.008 |
[52] |
BLEYENHEUFT Y, DRICOT L, EBNER-KARESTINOS D, et al. Motor skill training may restore impaired corticospinal tract fibers in children with cerebral palsy[J]. Neurorehabil Neural Repair, 2020, 34(6): 533-546.
doi: 10.1177/1545968320918841 pmid: 32407247 |
[53] |
JUENGER H, LINDER-LUCHT M, WALTHER M, et al. Cortical neuromodulation by constraint-induced movement therapy in congenital hemiparesis: an fMRI study[J]. Neuropediatrics, 2007, 38(3): 130-136.
pmid: 17985262 |
[54] |
MARTIN J H. The corticospinal system: from development to motor control[J]. Neuroscientist, 2005, 11(2): 161-173.
doi: 10.1177/1073858404270843 pmid: 15746384 |
[55] |
EYRE J, TAYLOR J, VILLAGRA F, et al. Evidence of activity-dependent withdrawal of corticospinal projections during human development[J]. Neurology, 2001, 57(9): 1543-1554.
pmid: 11706088 |
[56] |
RIOULT-PEDOTTI M S, FRIEDMAN D, HESS G, et al. Strengthening of horizontal cortical connections following skill learning[J]. Nat Neurosci, 1998, 1(3): 230-234.
doi: 10.1038/678 |
[57] |
NASCIMENTO L, GLORIA A, HABIB E. Effects of constraint-induced movement therapy as a rehabilitation strategy for the affected upper limb of children with hemiparesis: a systematic review of the literature[J]. Brazil J Phys Ther, 2009, 13: 97-102.
doi: 10.1590/S1413-35552009005000022 |
[58] | JAMALI A R, AMINI M. The effects of constraint-induced movement therapy on functions of children with cerebral palsy[J]. Iran J Child Neurol, 2018, 12(4): 16-27. |
[59] |
SOHN W J, SANGER T D. Constraint-induced intervention as an emergent phenomenon from synaptic competition in biological systems[J]. J Comput Neurosci, 2021, 49(2): 175-188.
doi: 10.1007/s10827-021-00782-9 pmid: 33825082 |
[60] |
CHAMUDOT R, PARUSH S, RIGBI A, et al. Brain lesions as a predictor of therapeutic outcomes of hand function in infants with unilateral cerebral palsy[J]. J Child Neurol, 2018, 33(14): 918-924.
doi: 10.1177/0883073818801632 pmid: 30307370 |
[61] |
TERVAHAUTA M H, GIROLAMI G L, ØBERG G K. Efficacy of constraint-induced movement therapy compared with bimanual intensive training in children with unilateral cerebral palsy: a systematic review[J]. Clin Rehabil, 2017, 31(11): 1445-1456.
doi: 10.1177/0269215517698834 pmid: 29050511 |
[62] |
GORDON A M, SCHNEIDER J A, CHINNAN A, et al. Efficacy of a hand-arm bimanual intensive therapy (HABIT) in children with hemiplegic cerebral palsy: a randomized control trial[J]. Develop Med Child Neurol, 2007, 49(11): 830-838.
doi: 10.1111/dmcn.2007.49.issue-11 |
[63] |
THORLEY M, LANNIN N, CUSICK A, et al. Reliability of the quality of upper extremity skills test for children with cerebral palsy aged 2 to 12 years[J]. Phys Occup Ther Pediatr, 2012, 32(1): 4-21.
doi: 10.3109/01942638.2011.602389 pmid: 21838618 |
[64] |
KLEPPER S E, CLAYTON KRASINSKI D, GILB M C, et al. Comparing unimanual and bimanual training in upper extremity function in children with unilateral cerebral palsy[J]. Pediatr Phys Ther, 2017, 29(4): 288-306.
doi: 10.1097/PEP.0000000000000438 pmid: 28953170 |
[1] | 魏辰, 王子贤, 李淑璠, 王芃, 贾舒祺, 田英. 镜像疗法对脑卒中患者上肢运动功能和日常生活活动能力影响的Meta分析[J]. 《中国康复理论与实践》, 2024, 30(3): 281-291. |
[2] | 刘换, 韩雪, 宋佳苧, 娄晓乐, 徐磊. 体位限制下康复机器人训练对脑卒中后肩关节半脱位患者上肢功能的效果[J]. 《中国康复理论与实践》, 2024, 30(3): 303-309. |
[3] | 吴亮, 许秀, 罗亮. 运动康复和适应性身体活动对痉挛性脑性瘫痪儿童青少年心理运动功能、运动功能和动作发展的效益:基于ICF的循证研究[J]. 《中国康复理论与实践》, 2024, 30(2): 148-156. |
[4] | 喜悦, 杨剑. 不同身体活动对脑性瘫痪儿童青少年健康效益的系统综述[J]. 《中国康复理论与实践》, 2024, 30(2): 157-167. |
[5] | 高玲, 褚凤明, 贾凡, 陈杰, 张明. 基于视听觉和运动反馈的脑机接口结合经颅直流电刺激对脑卒中患者上肢功能的效果[J]. 《中国康复理论与实践》, 2024, 30(2): 202-209. |
[6] | 林娜, 高菡璐, 卢惠苹, 陈燕清, 郑军凡, 陈述荣. 虚拟现实技术对脑卒中上肢功能影响的弥散张量成像研究[J]. 《中国康复理论与实践》, 2024, 30(1): 61-67. |
[7] | 陈珺雯, 陈谦, 陈程, 李淑月, 刘玲玲, 吴存书, 龚翔, 鲁俊, 许光旭. 改良八段锦身体活动对脑卒中患者心肺功能、运动功能和日常生活活动能力的效果[J]. 《中国康复理论与实践》, 2024, 30(1): 74-80. |
[8] | 王贺, 韩靓, 阚梦凡, 于少泓. 电刺激治疗脑卒中后肩手综合征有效性的系统评价与Meta分析[J]. 《中国康复理论与实践》, 2023, 29(9): 1048-1056. |
[9] | 胡晓诗, 张琦, 岳青, 梁艳华, 李晓松, 冯啊美, 张燕庆. 矫形弹力绷带对痉挛性偏瘫脑性瘫痪患儿步态对称性和步行能力的效果[J]. 《中国康复理论与实践》, 2023, 29(9): 1083-1089. |
[10] | 孙藤方, 任梦婷, 杨琳, 王耀霆, 王红雨, 闫兴洲. 高压氧治疗联合重复外周磁刺激干预脑卒中患者踝运动功能和平衡能力的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 875-881. |
[11] | 王亚楠, 刘西花. 脑卒中偏瘫患者主观和客观平衡功能测量的相关性及预测效能[J]. 《中国康复理论与实践》, 2023, 29(8): 890-895. |
[12] | 王海云, 王寅, 周信杰, 何爱群. 基于“中枢-外周-中枢”理论的经颅直流电刺激结合针刺干预脑卒中患者中枢及上肢功能的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 919-925. |
[13] | 陈怡婷, 王倩, 崔慎红, 李映彩, 张思鈺, 魏衍旭, 任慧, 冷军, 陈斌. 双侧序贯重复经颅磁刺激干预脑卒中患者上肢运动功能的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 926-932. |
[14] | 李芳, 霍速, 杜巨豹, 刘秀贞, 李小爽, 宋为群. 经颅直流电刺激联合任务导向性康复训练对脊髓损伤大鼠前肢运动障碍的效果[J]. 《中国康复理论与实践》, 2023, 29(7): 777-781. |
[15] | 崔尧, 丛芳, 黄富表, 曾明, 颜如秀. 不同镜像神经元训练策略下脑与肌肉的活动特征:基于近红外光谱与表面肌电图技术[J]. 《中国康复理论与实践》, 2023, 29(7): 782-790. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|