《中国康复理论与实践》 ›› 2024, Vol. 30 ›› Issue (4): 416-423.doi: 10.3969/j.issn.1006-9771.2024.04.006
杨榕1, 王倩2, 訾阳2, 陈怡婷1, 李映彩1, 冷军2()
收稿日期:
2023-09-30
修回日期:
2024-01-10
出版日期:
2024-04-25
发布日期:
2024-05-08
通讯作者:
冷军(1967-),女,硕士,主任医师,硕士研究生导师,主要研究方向:脑、脊髓损伤相关的中西医结合康复。E-mail: 作者简介:
杨榕(1997-),女,汉族,安徽宣城市人,硕士研究生,康复治疗师,主要研究方向:脑、脊髓损伤相关的中西医结合康复。
基金资助:
YANG Rong1, WANG Qian2, ZI Yang2, CHEN Yiting1, LI Yingcai1, LENG Jun2()
Received:
2023-09-30
Revised:
2024-01-10
Published:
2024-04-25
Online:
2024-05-08
Contact:
LENG Jun, E-mail: Supported by:
摘要:
目的 分析近10年脑机接口技术应用于康复领域的相关研究。
方法 检索2013年1月至2023年8月中国知网和Web of Science核心合集中有关脑机接口技术用于康复领域的文献。应用CiteSpace 6.2.R4软件进行可视化分析并绘制知识图谱。
结果 共纳入1 582篇文献,其中中文文献506篇,英文文献1 076篇。中英文年发文量均呈上升趋势。英文文献中,中国为发文量最多的国家,美国中心性最高。中文高产作者为明东,高产机构为天津大学。英文高产作者为Birbaumer N、Jochumsen M,高产机构为图宾根大学。中英文研究热点包括运动想象、脑卒中、脑电信号等。聚类结果显示,相关研究主要聚集于基础研究、疾病、功能以及联合应用4个方面。脑机接口联合运动想象、外骨骼康复机器人、功能性电刺激、虚拟现实等在脑卒中后的应用占较大比例。
结论 脑机接口应用于康复医学领域相关研究的热度总体呈上升趋势。未来可持续关注脑机接口技术在脑卒中、脊髓损伤、肌萎缩侧索硬化症患者中的应用。神经可塑性和信号解码等基础研究值得国内学者关注。
中图分类号:
杨榕, 王倩, 訾阳, 陈怡婷, 李映彩, 冷军. 近10年脑机接口技术用于康复医学领域的可视化分析[J]. 《中国康复理论与实践》, 2024, 30(4): 416-423.
YANG Rong, WANG Qian, ZI Yang, CHEN Yiting, LI Yingcai, LENG Jun. Brain-computer interface technology used in rehabilitation medicine in the last decade: a visualized analysis[J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(4): 416-423.
表6
英文文献关键词聚类"
编号 | 大小 | Silhouette | 主要关键词 |
---|---|---|---|
#0 | 44 | 0.619 | functional connectivity; stroke recovery; functional near-infrared spectroscopy; functional electrical stimulation; action observation |
#1 | 39 | 0.760 | motor imagery; stroke rehabilitation; virtual reality |
#2 | 37 | 0.746 | spinal cord injury; motor imagery; functional electrical stimulation; tetraplegia; motor learning |
#3 | 36 | 0.636 | deep learning; task analysis; feature extraction; brain modeling; convolutional neural network |
#4 | 36 | 0.551 | assistive technology; machine learning; electroencephalogram; evaluation; upper extremity neuroproteins |
#5 | 32 | 0.696 | amyotrophic lateral sclerosis; locked-in state; locked-in syndrome; transcranial direct current stimulation; laterality coefficient |
#6 | 29 | 0.704 | event-related desynchronization; event-related synchronization; mathematical models; cognitive dysfunction |
#7 | 28 | 0.715 | potentials; performance; communication; machine interfaces; movement intention |
[1] |
VIDAL J J. Toward direct brain-computer communication[J]. Annu Rev Biophys Bioeng, 1973, 2: 157-180.
pmid: 4583653 |
[2] | XU B, LIU D, XUE M, et al. Continuous shared control of a mobile robot with brain-computer interface and autonomous navigation for daily assistance[J]. Comput Struct Biotechnol J, 2023, 22: 3-16. |
[3] |
O'YOUNG B, GOSNEY J, AHN C. The concept and epidemiology of disability[J]. Phys Med Rehabil Clin N Am, 2019, 30(4): 697-707.
doi: S1047-9651(19)30057-9 pmid: 31563163 |
[4] | 陈立典, 励建安. 发展中的中国康复医学[J]. 康复学报, 2015, 25(1): 2-5. |
CHEN L D, LI J A. Developing Chinese rehabilitation medicine[J]. Rehabil Med, 2015, 25(1): 2-5. | |
[5] |
MAISELI B, ABDALLA A T, MASSAWE L V, et al. Brain-computer interface: trend, challenges, and threats[J]. Brain Inform, 2023, 10(1): 20.
doi: 10.1186/s40708-023-00199-3 pmid: 37540385 |
[6] |
刘明月, 樊亚蕾, 张蒙, 等. 近10年脑机接口技术用于脑卒中康复领域的可视化分析[J]. 中国康复理论与实践, 2023, 29(2): 223-230.
doi: 10.3969/j.issn.1006-9771.2023.02.011 |
LIU M Y, FAN Y L, ZHANG M, et al. Brain-computer interface technology for stroke in the past decade: a visualized analysis[J]. Chin J Rehabil Theory Pract, 2023, 29(2): 223-230. | |
[7] | GLANZEL W, CHEN C, SONG M. Visualizing a field of research: a methodology of systematic scientometric reviews[J]. PLoS One, 2019, 14(10): e0223994. |
[8] |
XUE X L, YANG X W, DENG Z Y, et al. Global trends and hotspots in research on rehabilitation robots: a bibliometric analysis from 2010 to 2020[J]. Front Public Health, 2022, 9: 806723.
doi: 10.3389/fpubh.2021.806723 |
[9] |
FAN Z G, WU J, CHEN S Y, et al. A swift expanding trend of extracellular vesicles in spinal cord injury research: a bibliometric analysis[J]. J Nanobiotechnology, 2023, 21(1): 289.
doi: 10.1186/s12951-023-02051-6 |
[10] | 李倩, 于娱, 施琴芬. 基于知识图谱的国内外颠覆式创新研究对比分析[J]. 科技管理研究, 2020, 40(15): 9-19. |
LI Q, YU Y, SHI Q F. A comparative analysis of disruptive innovation research at home and abroad based on knowledge map[J]. Sci Technol Manag Res, 2020, 40(15): 9-19. | |
[11] |
RAMOS-MURGUIALDAY A, BROETZ D, REA M, et al. Brain-machine interface in chronic stroke rehabilitation: a controlled study[J]. Ann Neurol, 2013, 74(1): 100-108.
doi: 10.1002/ana.v74.1 |
[12] |
BIASIUCCI A, LEEB R, ITURRATE I, et al. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke[J]. Nat Commun, 2018, 9(1): 2421.
doi: 10.1038/s41467-018-04673-z pmid: 29925890 |
[13] |
CERVERA M A, SOEKADAR S R, USHIBA J, et al. Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis[J]. Ann Clin Transl Neurol, 2018, 5(5): 651-663.
doi: 10.1002/acn3.2018.5.issue-5 |
[14] |
LOTTE F, BOUGRAIN L, CICHOCKI A, et al. A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update[J]. J Neural Eng, 2018, 15(3): 031005.
doi: 10.1088/1741-2552/aab2f2 |
[15] |
PICHIORRI F, MORONE G, PETTI M, et al. Brain-computer interface boosts motor imagery practice during stroke recovery[J]. Ann Neurol, 2015, 77(5): 851-865.
doi: 10.1002/ana.24390 pmid: 25712802 |
[16] | 曹鹏, 蒋鸿杰, 朱君明, 等. 提高对脑机接口的认识,推进临床转化研究及应用[J]. 中国神经精神疾病杂志, 2023, 49(6): 321-323. |
CAO P, JIANG H J, ZHU J M, et al. Improving the understanding of brain-computer interfaces and advancing clinical translational research and applications[J]. Chin J Nerv Ment Dis, 2023, 49(6): 321-323. | |
[17] |
POO M M, DU J L, IP N Y, et al. China brain project: basic neuroscience, brain diseases, and brain-inspired computing[J]. Neuron, 2016, 92(3): 591-596.
doi: 10.1016/j.neuron.2016.10.050 |
[18] | 何峰, 董博文, 韩锦, 等. 基于头皮脑电的游戏型脑机接口应用研究综述[J]. 电子与信息学报, 2022, 44(2): 415-423. |
HE F, DONG B W, HAN J, et al. Advances in application of game brain-computer interface based on electroencephalogram[J]. J Electron Inf Technol, 2022, 44(2): 415-423. | |
[19] |
SITARAM R, ROS T, STOECKEL L, et al. Closed-loop brain training: the science of neurofeedback[J]. Nat Rev Neurosci, 2017, 18(2): 86-100.
doi: 10.1038/nrn.2016.164 pmid: 28003656 |
[20] |
JOCHUMSEN M, HOUGAARD B I, KRISTENSEN M S, et al. Implementing performance accommodation mechanisms in online BCI for stroke rehabilitation: a study on perceived control and frustration[J]. Sensors (Basel), 2022, 22(23): 9051.
doi: 10.3390/s22239051 |
[21] | GUAN C, LIM C G, FUNG D, et al. BCI facilitates the improvement of cognitive functions in children and elderly[C]. Gangwon, South Korea:2020 8th International Winter Conference on Brain-Computer Interface (BCI), 2020. |
[22] | 陈悦, 宋超, 周京生, 等. 文献计量学视角下的论文被引频次影响因素研究——兼评使用与被引之间关系[J]. 情报杂志, 2019, 38(4): 96-104. |
CHEN Y, SONG C, ZHOU J S, et al. Study on the factors affecting the citation frequency of papers from the perspective of bibliometrics: comment on the relationship between usage and citation[J]. J Intell, 2019, 38(4): 96-104. | |
[23] |
ZHANG J, LI Z, LI Z, et al. Progress of acupuncture therapy in diseases based on magnetic resonance image studies: a literature review[J]. Front Hum Neurosci, 2021, 15: 694919.
doi: 10.3389/fnhum.2021.694919 |
[24] |
ABIRI R, BORHANI S, SELLERS E W, et al. A comprehensive review of EEG-based brain-computer interface paradigms[J]. J Neural Eng, 2019, 16(1): 011001.
doi: 10.1088/1741-2552/aaf12e |
[25] | 琚芬, 赵晨光, 袁华, 等. 脑机接口在康复医学中的应用进展[J]. 中国康复, 2017, 32(6): 508-511. |
QU F, ZHAO C G, YUAN H, et al. Advances in brain-computer interfaces in rehabilitation medicine[J]. Chin J Rehabil, 2017, 32(6): 508-511. | |
[26] |
MIRZABAGHERIAN H, MENHAJ M B, SURATGAR A A, et al. Temporal-spatial convolutional residual network for decoding attempted movement related EEG signals of subjects with spinal cord injury[J]. Comput Biol Med, 2023, 164: 107159.
doi: 10.1016/j.compbiomed.2023.107159 |
[27] |
CHUANG C C, LEE C C, SO E C, et al. Multi-task learning-based deep neural network for steady-state visual evoked potential-based brain-computer interfaces[J]. Sensors (Basel), 2022, 22(21): 8303.
doi: 10.3390/s22218303 |
[28] |
LIU X, ZHANG W, LI W, et al. Effects of motor imagery based brain-computer interface on upper limb function and attention in stroke patients with hemiplegia: a randomized controlled trial[J]. BMC Neurol, 2023, 23(1): 136.
doi: 10.1186/s12883-023-03150-5 pmid: 37003976 |
[29] | HAO M, FANG Q, WU B, et al. Rehabilitation effect of intelligent rehabilitation training system on hemiplegic limb spasms after stroke[J]. Open Life Sci, 2023, 18(1): 20220724. |
[30] |
ZHANG M, ZHU F, JIA F, et al. Efficacy of brain-computer interfaces on upper extremity motor function rehabilitation after stroke: a systematic review and meta-analysis[J]. NeuroRehabilitation, 2024, 54(2): 199-212.
doi: 10.3233/NRE-230215 |
[31] |
YANG W, ZHANG X, LI Z, et al. The effect of brain-computer interface training on rehabilitation of upper limb dysfunction after stroke: a meta-analysis of randomized controlled trials[J]. Front Neurosci, 2021, 15: 766879.
doi: 10.3389/fnins.2021.766879 |
[32] |
WEN D, FAN Y, HSU S H, et al. Combining brain-computer interface and virtual reality for rehabilitation in neurological diseases: a narrative review[J]. Ann Phys Rehabil Med, 2021, 64(1): 101404.
doi: 10.1016/j.rehab.2020.03.015 |
[33] |
LAMBERT K J M, CHEN Y Y, DONOFF C, et al. Handedness effects on imagery of dominant- versus non-dominant-hand movements: an electroencephalographic investigation[J]. Eur J Neurosci, 2023, 58(5): 3286-3298.
doi: 10.1111/ejn.v58.5 |
[34] |
HU M, CHENG H J, JI F, et al. Brain functional changes in stroke following rehabilitation using brain-computer interface-assisted motor imagery with and without tDCS: a pilot study[J]. Front Hum Neurosci, 2021, 15: 692304.
doi: 10.3389/fnhum.2021.692304 |
[35] |
石曼欣妤, 孟德涛, 方伯言. 帕金森病康复研究进展的可视化分析[J]. 中国康复理论与实践, 2022, 28(9): 1060-1064.
doi: 10.3969/j.issn.1006-9771.2022.09.008 |
SHI M X Y, MENG D T, FANG B Y. Advance in Parkinson's disease rehabilitation: a visualization analysis[J]. Chin J Rehabil Theory Pract, 2022, 28(9): 1060-1064. | |
[36] |
OTHMAN M H, BHATTACHARYA M, MØLLER K, et al. Resting-state NIRS-EEG in unresponsive patients with acute brain injury: a proof-of-concept study[J]. Neurocrit Care, 2021, 34(1): 31-44.
doi: 10.1007/s12028-020-00971-x |
[37] | 梁欣, 胡才友, 江文宇, 等. 功能性近红外光谱技术在慢性意识障碍患者意识评估、沟通交流、意识恢复监测中的应用研究进展[J]. 山东医药, 2022, 62(27): 102-106. |
LIANG X, HU C Y, JIANG W Y, et al. Research progress on the application of functional near-infrared spectroscopy technology in the assessment of consciousness, communication, and monitoring of consciousness recovery in patients with chronic disorders of consciousness[J]. Shandong Med J, 2022, 62(27): 102-106. | |
[38] |
LEE S H, KIM S S, LEE B H. Action observation training and brain-computer interface controlled functional electrical stimulation enhance upper extremity performance and cortical activation in patients with stroke: a randomized controlled trial[J]. Physiother Theory Pract, 2022, 38(9): 1126-1134.
doi: 10.1080/09593985.2020.1831114 |
[39] |
SEBASTIÁN-ROMAGOSA M, CHO W, ORTNER R, et al. Brain computer interface treatment for motor rehabilitation of upper extremity of stroke patients: a feasibility study[J]. Front Neurosci, 2020, 14: 591435.
doi: 10.3389/fnins.2020.591435 |
[40] |
ZANONA A F, PISCITELLI D, SEIXAS V M, et al. Brain-computer interface combined with mental practice and occupational therapy enhances upper limb motor recovery, activities of daily living, and participation in subacute stroke[J]. Front Neurol, 2022, 13: 1041978.
doi: 10.3389/fneur.2022.1041978 |
[41] | 蒋勤, 张毅, 谢志荣. 脑机接口在康复医疗领域的应用研究综述[J]. 重庆邮电大学学报(自然科学版), 2021, 33(4): 562-570. |
JIANG Q, ZHANG Y, XIE Z R. A review on brain-computer interfaces for rehabilitation application[J]. J Chongqing Univ Posts Telecommun (Nat Sci Ed), 2021, 33(4): 562-570. | |
[42] |
SHANECHI M M. Brain-machine interfaces from motor to mood[J]. Nat Neurosci, 2019, 22(10): 1554-1564.
doi: 10.1038/s41593-019-0488-y pmid: 31551595 |
[43] |
QIAN X, LOO B R Y, CASTELLANOS F X, et al. Brain-computer-interface-based intervention re-normalizes brain functional network topology in children with attention deficit/hyperactivity disorder[J]. Transl Psychiatry, 2018, 8(1): 149.
doi: 10.1038/s41398-018-0213-8 |
[44] |
MANE R, CHOUHAN T, GUAN C. BCI for stroke rehabilitation: motor and beyond[J]. J Neural Eng, 2020, 17(4): 041001.
doi: 10.1088/1741-2552/aba162 |
[45] | 肖峰. 脑机接口技术的发展现状、难题与前景[J]. 人民论坛, 2023(16): 34-39. |
[46] |
VAGHEI Y, PARK E J, ARZANPOUR S. Decoding brain signals to classify gait direction anticipation[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2022, 2022: 309-312.
doi: 10.1109/EMBC48229.2022.9871566 pmid: 36086221 |
[47] |
FROLOV A A, MOKIENKO O, LYUKMANOV R, et al. Post-stroke rehabilitation training with a motor-imagery-based brain-computer interface (BCI)-controlled hand exoskeleton: a randomized controlled multicenter trial[J]. Front Neurosci, 2017, 11: 400.
doi: 10.3389/fnins.2017.00400 |
[48] |
LUO S, RABBANI Q, CRONE N E. Brain-computer interface: applications to speech decoding and synthesis to augment communication[J]. Neurotherapeutics, 2022, 19(1): 263-273.
doi: 10.1007/s13311-022-01190-2 pmid: 35099768 |
[49] | 张明, 王斌, 贾凡, 等. 基于脑电图的脑机接口技术在脑卒中患者上肢运动功能康复中的应用[J]. 中国组织工程研究, 2024, 28(4): 581-586. |
ZHANG M, WANG B, JIA F, et al. Application of brain-computer interface technology based on electroencephalogram in upper limb motor function rehabilitation of stroke patients[J]. J Clin Rehabil Tis Eng Res, 2024, 28(4): 581-586. | |
[50] |
MENG L, JIANG X, HUANG J, et al. User identity protection in EEG-based brain-computer interfaces[J]. IEEE Trans Neural Syst Rehabil Eng, 2023, 31: 3576-3586.
doi: 10.1109/TNSRE.2023.3310883 |
[1] | 王振洲, 张杨. 近20年国际人工智能赋能特殊儿童诊断及干预研究的可视化分析[J]. 《中国康复理论与实践》, 2024, 30(4): 404-415. |
[2] | 黄龙贤, 左燕, 陈丽梅, 顾思佳, 蒋金梅, 张志伟. 近20年吞咽障碍患者误吸研究动态的可视化分析[J]. 《中国康复理论与实践》, 2024, 30(3): 292-302. |
[3] | 刘京宇, 杨延砚, 张元鸣飞, 刘小燮, 张娜, 张之良, 周谋望. 2022年度国家康复医疗服务与质量安全报告[J]. 《中国康复理论与实践》, 2024, 30(2): 125-140. |
[4] | 高玲, 褚凤明, 贾凡, 陈杰, 张明. 基于视听觉和运动反馈的脑机接口结合经颅直流电刺激对脑卒中患者上肢功能的效果[J]. 《中国康复理论与实践》, 2024, 30(2): 202-209. |
[5] | 邹瑜聪, 周静, 林炜明, 李冬霞, 王娟, 王昱棋, 王玉龙. 近5年慢性意识障碍治疗的可视化分析[J]. 《中国康复理论与实践》, 2023, 29(9): 1065-1071. |
[6] | 马甜甜, 于子夫, 秦芳, 冷晓轩, 刘西花. 强制性运动疗法在康复领域应用的可视化分析[J]. 《中国康复理论与实践》, 2023, 29(7): 822-832. |
[7] | 吴千豪, 侯榕洁, 傅丽媛. 近10年国内外盆底康复的可视化分析[J]. 《中国康复理论与实践》, 2023, 29(6): 673-685. |
[8] | 徐敏杰, 王博, 周莉, 王海芳, 雷筱菁, 李颖, 包炜玮, 马亚男, 常静玲. 基于Web of Science数据库脑卒中后语言与非语言认知功能研究的可视化分析[J]. 《中国康复理论与实践》, 2023, 29(4): 452-464. |
[9] | 杨延辉, 王浩冲, 董媛媛, 史改革, 李秋霞, 张洁, 石秀娥. 视觉运动诱导的脑机接口技术应用于脑卒中患者上肢运动功能和认知功能的效果[J]. 《中国康复理论与实践》, 2023, 29(4): 472-478. |
[10] | 唐芷晴, 刘天昊, 韩凯月, 刘影, 赵京都, 张皓. 近5年经颅磁刺激治疗脑卒中的可视化分析[J]. 《中国康复理论与实践》, 2023, 29(3): 294-301. |
[11] | 袁元, 张国辉, 张宏. 运动性肌肉损伤物理治疗研究的可视化分析[J]. 《中国康复理论与实践》, 2023, 29(3): 312-319. |
[12] | 刘明月, 樊亚蕾, 张蒙, 宋薛艺, 李哲. 近10年脑机接口技术用于脑卒中康复领域的可视化分析[J]. 《中国康复理论与实践》, 2023, 29(2): 223-230. |
[13] | 刘小燮, 褚红玲, 刘美, 郭艾鑫, 王思远, 曾凡硕, 江山, 谢欲晓, 周谋望. 2022年医学期刊发表中国康复医学指南和共识的科学性、透明性和适用性评级[J]. 《中国康复理论与实践》, 2023, 29(12): 1365-1376. |
[14] | 胡嘉铨, 祝丽玲, 姜志梅. 近20年有关孤独症谱系障碍早期筛查工具研究的可视化分析[J]. 《中国康复理论与实践》, 2023, 29(11): 1304-1315. |
[15] | 张宁, 杨远滨, 田浩林, 万梦莹. 功能性近红外光谱应用于康复领域的可视化分析[J]. 《中国康复理论与实践》, 2023, 29(10): 1171-1178. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|