《中国康复理论与实践》 ›› 2023, Vol. 29 ›› Issue (9): 1072-1082.doi: 10.3969/j.issn.1006-9771.2023.09.011
收稿日期:
2023-03-16
修回日期:
2023-08-16
出版日期:
2023-09-25
发布日期:
2023-10-26
通讯作者:
纪仲秋
E-mail:jizhongqiu61@bnu.edu.cn
作者简介:
赵盼超(1994-),女,汉族,河北沧州市人,博士,讲师,主要研究方向:运动生物力学与儿童动作发展。
基金资助:
ZHAO Panchao1,2, JI Zhongqiu2(), JIANG Guiping2, WEN Ruixiang2
Received:
2023-03-16
Revised:
2023-08-16
Published:
2023-09-25
Online:
2023-10-26
Contact:
JI Zhongqiu
E-mail:jizhongqiu61@bnu.edu.cn
Supported by:
摘要:
目的 研究不同干扰任务和年龄对3~8岁儿童步态特征和任务成本的影响。
方法 2021年4月至8月,于河北沧州市第二幼儿园和沧州市回民小学招募200例儿童,分别于自然行走(标准步态)、回答问题时行走(认知步态)和跨越障碍物行走(越障步态)时,采用红外动作捕捉系统采集步态参数,Kistler测力台采集地面反作用力;采用Anybody 7.0软件仿真建模。
结果 182例完成测试。任务对步态的时空参数主效应显著(F > 5.167, P < 0.01),年龄对除步宽、步速之外的时空参数主效应显著(F > 2.321, P < 0.05),任务和年龄对双支撑期百分比、单支撑期百分比、步长的交互效应显著(F > 3.040, P < 0.01)。任务对步态的运动学参数主效应显著(F > 83.019, P < 0.001),年龄对除膝关节活动度、踝关节最大角速度之外的运动学参数主效应显著(F > 2.359, P < 0.05),任务和年龄对除髋关节活动度外的运动学参数交互效应显著(F > 2.066, P < 0.05)。任务和年龄对步态的动力学参数主效应显著(F > 4.032, P < 0.05),任务和年龄对除内侧比目鱼肌、外侧腓肠肌、内侧腓肠肌、胫骨前肌肌力外的动力学参数交互效应显著(F > 2.189, P < 0.05)。步速和步幅的变异系数认知步态>越障步态>标准步态;任务和年龄对步速和步幅任务成本的主效应显著(F > 3.368, P < 0.01),交互效应均不显著。
结论 儿童早期步态受干扰任务和年龄的双重影响。干扰任务下,儿童步态周期增加,单支撑期百分比减小,步幅、步频和步速减小,任务成本增加,步态稳定性下降。认知任务对步态的影响大于越障任务,可能由于认知任务成本更大。步态特征在年龄方面呈现非线性发展趋势。
中图分类号:
赵盼超, 纪仲秋, 姜桂萍, 文蕊香. 不同任务干扰对儿童早期步态特征和任务成本的影响[J]. 《中国康复理论与实践》, 2023, 29(9): 1072-1082.
ZHAO Panchao, JI Zhongqiu, JIANG Guiping, WEN Ruixiang. Influence of different tasks on gait characteristics and task cost in early childhood[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1072-1082.
表1
受试者基本情况"
组别 | n | 年龄/岁 | 身高/cm | 体质量/kg | 体质量指数/(kg·m-2) |
---|---|---|---|---|---|
3岁组 | 30 | 3.80±0.15 | 103.30±4.70 | 17.46±2.38 | 16.37±2.09 |
4岁组 | 32 | 4.53±0.31 | 108.78±4.39a | 18.89±2.01 | 15.95±1.34 |
5岁组 | 30 | 5.53±0.32 | 116.28±5.08a,b | 21.70±3.18a | 16.02±1.94 |
6岁组 | 30 | 6.60±0.32 | 122.93±4.60a,b,c | 25.58±4.43a,b,c | 16.88±2.36 |
7岁组 | 30 | 7.52±0.26 | 126.33±6.03a,b,c | 26.49±6.51a,b,c | 16.43±2.82 |
8岁组 | 30 | 8.40±0.23 | 132.65±5.23a,b,c,d,e | 32.39±6.87a,b,c,d,e | 18.34±3.54a,b,c |
F值 | 1263.063 | 147.790 | 44.023 | 4.116 | |
P值 | < 0.001 | < 0.001 | < 0.001 | 0.001 |
表3
不同年龄和任务下步态时空参数比较"
参数 | 任务 | 3岁组 (n = 30) | 4岁组 (n = 32) | 5岁组 (n = 30) | 6岁组 (n = 30) | 7岁组 (n = 30) | 8岁组 (n = 30) | 合计 (n = 182) |
---|---|---|---|---|---|---|---|---|
步态周期/s | 标准 | 0.81±0.08 | 0.83±0.11 | 0.86±0.09 | 0.89±0.10 | 0.89±0.08 | 0.91±0.10a,b | 0.87±0.10 |
认知 | 0.88±0.11 | 0.94±0.15 | 0.96±0.12 | 1.02±0.22a | 1.04±0.11a | 1.03±0.12a | 0.98±0.16① | |
越障 | 0.95±0.22 | 0.95±0.15 | 0.95±0.10 | 0.98±0.11 | 0.99±0.12 | 0.99±0.09 | 0.97±0.14① | |
双支撑期 百分比/% | 标准 | 11.22±1.88 | 11.41±2.34 | 10.47±1.73a | 9.82±1.45a,b | 9.32±1.24a,b | 9.33±1.17a,b | 10.26±2.17 |
认知 | 14.42±1.44① | 13.60±3.00① | 14.15±2.84① | 13.67±3.05① | 14.72±2.84① | 14.36±2.00① | 14.15±2.60 | |
越障 | 11.36±2.25 | 11.12±1.89 | 12.08±2.31① | 11.97±1.59① | 12.06±1.65① | 12.31±1.51① | 11.81±1.92 | |
单支撑期 百分比/% | 标准 | 35.66±3.66 | 37.67±4.07a | 39.30±3.28a | 40.65±2.54a,b | 41.37±2.50a,b | 41.31±2.19a,b | 38.98±4.10 |
认知 | 31.16±2.89① | 32.76±6.00① | 31.71±5.68① | 32.67±6.10① | 30.57±5.68① | 31.28±4.00① | 31.70±4.00 | |
越障 | 36.28±4.50 | 37.75±3.79 | 35.85±4.62① | 36.05±3.17① | 35.89±3.29① | 35.37±3.03① | 36.38±3.83 | |
步幅/% | 标准 | 76.65±12.05 | 76.50±8.31 | 83.11±9.31 | 83.02±12.86 | 86.48±9.40a,b | 83.79±7.97 | 81.53±10.66 |
认知 | 72.02±10.25 | 71.07±14.64 | 73.90±12.01 | 74.41±11.45 | 72.29±10.70 | 71.23±8.09 | 72.46±11.31① | |
越障 | 75.5±11.54 | 79.99±10.49 | 80.57±15.39 | 84.31±11.57 | 82.83±11.15 | 83.17±7.49 | 81.05±11.68 | |
步长/m | 标准 | 0.40±0.06 | 0.42±0.06 | 0.49±0.06a,b | 0.50±0.08a,b | 0.54±0.06a,b,c | 0.56±0.04a,b,c,d | 0.49±0.08 |
认知 | 0.37±0.06 | 0.37±0.05① | 0.43±0.07① | 0.46±0.08① | 0.41±0.17① | 0.47±0.05a,b① | 0.42±0.10 | |
越障 | 0.40±0.08 | 0.44±0.05② | 0.48±0.07a② | 0.51±0.10a,b② | 0.53±0.06a,b② | 0.55±0.05a,b,c② | 0.49±0.08 | |
步宽/m | 标准 | 0.10±0.02 | 0.10±0.03 | 0.08±0.02 | 0.07±0.02 | 0.07±0.02 | 0.07±0.02 | 0.08±0.04 |
认知 | 0.08±0.02 | 0.09±0.02 | 0.09±0.02 | 0.09±0.02 | 0.09±0.06 | 0.08±0.02 | 0.09±0.03① | |
越障 | 0.09±0.03 | 0.09±0.03 | 0.08±0.02 | 0.10±0.02 | 0.09±0.03 | 0.08±0.03 | 0.09±0.04① | |
步频/(min-1) | 标准 | 144.95±17.42 | 147.36±17.82 | 141.10±13.41 | 135.59±14.08b | 135.26±10.99b | 130.06±11.05a,b | 139.11±15.47 |
认知 | 138.88±18.72 | 131.08±19.04 | 127.21±14.44 | 121.12±22.44a | 116.17±12.51a,b | 117.60±13.32a,b | 125.41±18.70① | |
越障 | 135.29±25.15 | 130.75±18.55 | 126.62±14.76 | 122.84±13.12 | 123.82±12.44 | 121.33±10.31a | 126.80±16.97① | |
步速/ (%·s-1) | 标准 | 96.58±20.15 | 95.02±18.73 | 99.44±20.51 | 92.48±15.68 | 100.46±17.62 | 91.64±10.43 | 95.88±17.56 |
认知 | 86.08±19.07 | 76.45±17.72 | 79.05±17.77 | 77.36±20.47 | 72.70±15.97 | 72.33±14.75 | 77.15±18.12① | |
越障 | 90.23±20.73 | 87.73±23.37 | 90.42±17.13 | 88.08±15.21 | 86.16±13.62 | 85.58±10.62 | 88.03±17.24①② |
表4
步态时空参数主效应和交互效应检验"
因变量 | 主效应/交互效应 | 自由度 | F值 | P值 | ηp2值 |
---|---|---|---|---|---|
步态周期 | 任务 | 2 | 68.746 | < 0.001 | 0.281 |
年龄 | 5 | 5.206 | < 0.001 | 0.129 | |
任务×年龄 | 10 | 1.646 | 0.092 | 0.045 | |
双支撑期百分比 | 任务 | 2 | 185.595 | < 0.001 | 0.513 |
年龄 | 5 | 2.321 | 0.045 | 0.062 | |
任务×年龄 | 10 | 10.221 | < 0.001 | 0.225 | |
单支撑期百分比 | 任务 | 2 | 197.589 | < 0.001 | 0.529 |
年龄 | 5 | 2.509 | 0.032 | 0.067 | |
任务×年龄 | 10 | 9.902 | < 0.001 | 0.220 | |
步幅 | 任务 | 2 | 62.824 | < 0.001 | 0.263 |
年龄 | 5 | 2.642 | 0.025 | 0.070 | |
任务×年龄 | 10 | 2.025 | 0.077 | 0.054 | |
步长 | 任务 | 2 | 71.044 | < 0.001 | 0.288 |
年龄 | 5 | 26.922 | < 0.001 | 0.433 | |
任务×年龄 | 10 | 3.040 | 0.001 | 0.080 | |
步宽 | 任务 | 2 | 5.167 | 0.006 | 0.029 |
年龄 | 5 | 0.969 | 0.438 | 0.027 | |
任务×年龄 | 10 | 1.362 | 0.196 | 0.037 | |
步频 | 任务 | 2 | 71.164 | < 0.001 | 0.288 |
年龄 | 5 | 8.396 | < 0.001 | 0.193 | |
任务×年龄 | 10 | 1.502 | 0.137 | 0.041 | |
步速 | 任务 | 2 | 86.575 | < 0.001 | 0.330 |
年龄 | 5 | 1.383 | 0.233 | 0.038 | |
任务×年龄 | 10 | 1.546 | 0.122 | 0.042 |
表5
不同年龄和任务下步态运动学参数比较"
参数 | 任务 | 3岁组 (n = 30) | 4岁组 (n = 32) | 5岁组 (n = 30) | 6岁组 (n = 30) | 7岁组 (n = 30) | 8岁组 (n = 30) | 合计 (n = 182) |
---|---|---|---|---|---|---|---|---|
髋关节 活动度/° | 标准 | 38.24±5.49 | 39.70±7.70 | 40.33±6.39 | 41.72±6.05 | 41.38±5.44 | 38.31±5.40 | 40.29±6.24 |
认知 | 36.14±7.30 | 35.93±6.67 | 36.65±7.49 | 36.52±6.17 | 33.59±5.24 | 31.54±5.58a,b,c,d | 35.08±6.64① | |
越障 | 49.64±5.95 | 52.53±6.73 | 53.01±7.41 | 54.15±6.35 | 51.80±5.57 | 51.02±5.21 | 52.03±6.33①② | |
膝关节 活动度/° | 标准 | 60.93±5.71 | 58.30±7.40 | 58.61±7.11 | 58.32±7.10 | 56.38±5.47 | 59.40±9.66 | 58.65±7.23 |
认知 | 56.85±5.13① | 57.01±6.13 | 57.74±6.00 | 57.82±8.68 | 55.19±5.74 | 53.10±6.67① | 56.29±6.60 | |
越障 | 80.56±9.95①② | 85.24±13.27①② | 87.14±14.18①② | 83.34±12.24①② | 79.34±12.11①② | 84.94±8.54①② | 83.45±12.03 | |
踝关节 活动度/° | 标准 | 97.53±10.79 | 100.50±10.68 | 103.78±8.88 | 106.73±13.05 | 101.03±9.48 | 98.25±11.23 | 101.30±11.07 |
认知 | 94.82±14.47 | 94.75±14.20 | 94.78±18.97① | 95.73±14.75① | 89.38±12.87① | 81.65±17.75a,b,c① | 91.90±16.21 | |
越障 | 116.47±16.09①② | 129.06±17.64a①② | 131.8±14.11a①② | 123.03±15.92①② | 118.03±14.69c①② | 122.55±14.19①② | 123.55±16.26 | |
髋关节最大角速度/(rad·s-1) | 标准 | 3.72±0.89 | 3.61±0.69 | 3.46±0.73 | 3.31±0.66 | 3.31±0.66 | 3.20±0.58a | 3.45±0.71 |
认知 | 3.16±0.88① | 3.04±0.75① | 3.03±0.78① | 2.86±0.71① | 2.58±0.45a① | 2.35±0.57a,b,c① | 2.84±0.75 | |
越障 | 3.89±1.12② | 4.22±0.81①② | 4.18±0.83①② | 4.16±0.81①② | 4.35±0.69①② | 4.16±0.97①② | 4.16±0.88 | |
膝关节最大角速度/(rad·s-1) | 标准 | 6.83±1.46 | 6.54±1.46 | 6.61±1.23 | 5.85±1.28 | 5.75±1.14 | 5.86±1.01 | 6.24±1.33 |
认知 | 6.27±1.76 | 5.98±1.76 | 6.12±1.52 | 5.40±1.39 | 4.90±0.62a,b,c① | 4.86±0.72a,b,c① | 5.59±1.47 | |
越障 | 8.22±2.23①② | 8.35±1.53①② | 9.01±1.84①② | 8.38±1.62①② | 8.66±1.57①② | 9.25±1.60①② | 8.64±1.76 | |
踝关节最大角速度/(rad·s-1) | 标准 | 11.49±2.78 | 10.32±2.83 | 10.78±1.92 | 10.49±2.26 | 10.60±2.33 | 9.80±2.10 | 10.58±2.42 |
认知 | 10.31±3.03① | 9.96±2.78 | 9.03±2.69① | 8.82±1.88① | 8.25±1.76① | 7.48±1.57① | 8.98±2.52 | |
越障 | 11.94±2.82 | 12.97±4.54①② | 13.74±4.14①② | 12.34±3.34② | 12.91±4.59①② | 12.69±4.57①② | 12.77±4.05 |
表6
步态运动学参数主效应和交互效应检验"
因变量 | 主效应/交互效应 | 自由度 | F值 | P值 | ηp2值 |
---|---|---|---|---|---|
髋关节活动度 | 任务 | 2 | 504.092 | < 0.001 | 0.741 |
年龄 | 5 | 2.927 | 0.015 | 0.077 | |
任务×年龄 | 10 | 1.740 | 0.071 | 0.047 | |
膝关节活动度 | 任务 | 2 | 813.462 | < 0.001 | 0.822 |
年龄 | 5 | 1.324 | 0.256 | 0.036 | |
任务×年龄 | 10 | 2.534 | 0.006 | 0.067 | |
踝关节活动度 | 任务 | 2 | 308.044 | < 0.001 | 0.636 |
年龄 | 5 | 4.556 | 0.001 | 0.115 | |
任务×年龄 | 10 | 3.357 | < 0.001 | 0.087 | |
髋关节最大角速度 | 任务 | 2 | 176.724 | < 0.001 | 0.501 |
年龄 | 5 | 2.359 | 0.042 | 0.063 | |
任务×年龄 | 10 | 3.412 | < 0.001 | 0.088 | |
膝关节最大角速度 | 任务 | 2 | 271.557 | < 0.001 | 0.607 |
年龄 | 5 | 3.074 | 0.011 | 0.080 | |
任务×年龄 | 10 | 3.983 | < 0.001 | 0.102 | |
踝关节最大角速度 | 任务 | 2 | 83.019 | < 0.001 | 0.321 |
年龄 | 5 | 1.798 | 0.116 | 0.049 | |
任务×年龄 | 10 | 2.066 | 0.026 | 0.055 |
表7
不同年龄和任务下各相关肌肉相对肌力比较 单位:N/kg"
参数 | 任务 | 3岁组 (n = 30) | 4岁组 (n = 32) | 5岁组 (n = 30) | 6岁组 (n = 30) | 7岁组 (n = 30) | 8岁组 (n = 30) | 合计 (n = 182) |
---|---|---|---|---|---|---|---|---|
外侧比目鱼肌 | 标准 | 15.86±5.09 | 12.97±5.04 | 16.01±5.53 | 11.04±4.55a | 11.96±4.12a | 12.79±4.56a | 15.86±5.09 |
认知 | 12.80±2.62 | 11.02±5.18a | 11.49±3.16a | 11.39±3.70a | 9.93±2.40a | 9.77±2.72a | 11.16±3.91 | |
越障 | 18.73±5.15 | 16.10±6.41①② | 13.24±4.74a | 11.14±2.49a,b | 10.3±4.52ab | 9.14±3.87a,b | 12.95±5.70 | |
内侧比目鱼肌 | 标准 | 17.89±4.51 | 15.72±5.70 | 17.14±3.68 | 14.94±3.72 | 17.31±4.73 | 14.50±3.11 | 16.22±4.44 |
认知 | 13.24±4.78 | 13.73±3.34 | 14.45±4.49 | 13.54±3.49 | 13.47±4.60 | 12.84±3.33 | 13.60±4.41① | |
越障 | 22.09±4.20 | 17.86±5.52a | 16.85±4.56a | 15.12±2.70a | 17.63±4.26a | 13.19±4.53a,b | 17.03±5.10② | |
外侧腓肠肌 | 标准 | 6.11±2.14 | 5.21±2.01 | 6.32±3.17 | 4.58±1.64a | 4.13±1.31a,c | 4.63±1.53a,c | 5.13±2.15 |
认知 | 4.50±1.81 | 4.61±1.70 | 4.53±1.21 | 4.47±1.16a | 4.16±1.04a,b,c | 4.11±1.08a,b,c | 4.39±1.60① | |
越障 | 6.05±1.56 | 5.39±2.49 | 5.92±2.10 | 4.64±1.65 | 4.58±2.01 | 4.20±1.42a | 5.09±2.00② | |
内侧腓肠肌 | 标准 | 16.32±5.85 | 14.37±5.98 | 15.98±5.85 | 12.76±4.86 | 12.30±3.80 | 13.77±3.40 | 14.21±5.15 |
认知 | 12.47±5.31 | 12.31±3.65 | 12.12±4.95 | 10.53±2.85a | 10.09±3.64a | 10.33±3.27a,b,c | 11.42±4.50① | |
越障 | 16.01±3.87 | 14.53±6.57 | 16.07±5.56 | 13.41±4.68 | 14.66±5.22 | 15.87±5.93 | 15.09±5.39② | |
胫骨前肌 | 标准 | 1.73±1.00 | 2.37±1.12 | 2.51±1.34 | 3.38±1.45a | 3.57±1.43a | 4.54±1.32a,b,c | 3.07±1.28 |
认知 | 1.00±0.62 | 2.20±0.89a | 2.46±1.24a | 2.57±1.22a | 2.91±1.69a | 3.55±1.61a | 2.50±1.49① | |
越障 | 2.18±1.02 | 2.70±1.85 | 2.77±1.50 | 3.24±1.21 | 4.30±1.71a,b,c | 4.56±2.07a,b,c | 3.35±1.82② | |
股二头肌 | 标准 | 8.51±3.88 | 8.99±4.36 | 8.11±5.23 | 6.08±2.57 | 7.06±2.53 | 6.39±2.56 | 7.50±3.71 |
认知 | 7.84±3.73 | 6.88±3.06 | 6.83±3.31 | 5.22±2.45 | 5.17±1.90a,b,c | 5.49±2.24a,b,c① | 6.24±3.24 | |
越障 | 14.87±4.76①② | 13.67±4.56①② | 12.85±4.58①② | 9.32±4.05a,b①② | 9.48±2.70a,b①② | 9.57±4.54a,b,c② | 11.16±4.94 | |
股直肌 | 标准 | 6.63±3.78 | 7.82±4.19 | 9.59±6.39 | 9.34±5.16 | 9.03±5.61 | 8.68±3.98 | 8.52±4.93 |
认知 | 4.17±2.14 | 5.75±2.57 | 4.71±1.95① | 5.27±1.86① | 5.32±2.15① | 5.05±2.72① | 5.07±2.28 | |
越障 | 4.22±2.05 | 4.34±3.37① | 4.89±3.47① | 9.07±4.47a,b,c② | 9.51±5.92a,b,c② | 10.18±6.67a,b,c② | 7.17±5.31 | |
臀大肌上束 | 标准 | 5.90±1.50 | 4.63±1.56 | 6.51±1.91 | 3.52±1.04c | 3.82±1.08 | 4.67±1.05 | 4.80±1.51 |
认知 | 4.72±1.27 | 4.35±1.34 | 4.30±1.33① | 2.43±1.21a,b,c | 2.64±1.60a,b,c | 2.64±1.37a,b,c① | 3.48±1.65 | |
越障 | 10.06±4.56①② | 8.39±3.86①② | 7.94±4.08② | 4.30±2.90a,b,c② | 4.32±2.22a,b,c | 4.65±3.42a,b,c | 6.49±4.15 |
表8
步态动力学学参数主效应和交互效应检验"
因变量 | 主效应/交互效应 | 自由度 | F值 | P值 | ηp2值 |
---|---|---|---|---|---|
外侧比目鱼肌 | 任务 | 2 | 4.032 | 0.019 | 0.031 |
年龄 | 5 | 16.779 | < 0.001 | 0.404 | |
任务×年龄 | 10 | 2.727 | 0.003 | 0.099 | |
内侧比目鱼肌 | 任务 | 2 | 19.582 | < 0.001 | 0.136 |
年龄 | 5 | 11.581 | < 0.001 | 0.318 | |
任务×年龄 | 10 | 1.841 | 0.054 | 0.069 | |
外侧腓肠肌 | 任务 | 2 | 24.041 | < 0.001 | 0.162 |
年龄 | 5 | 13.637 | < 0.001 | 0.355 | |
任务×年龄 | 10 | 0.463 | 0.913 | 0.018 | |
内侧腓肠肌 | 任务 | 2 | 34.243 | < 0.001 | 0.216 |
年龄 | 5 | 5.181 | < 0.001 | 0.173 | |
任务×年龄 | 10 | 2.076 | 0.073 | 0.077 | |
胫骨前肌 | 任务 | 2 | 11.809 | < 0.001 | 0.087 |
年龄 | 5 | 20.673 | < 0.001 | 0.455 | |
任务×年龄 | 10 | 1.720 | 0.077 | 0.065 | |
股二头肌 | 任务 | 2 | 110.932 | < 0.001 | 0.472 |
年龄 | 5 | 12.696 | < 0.001 | 0.339 | |
任务×年龄 | 10 | 2.189 | 0.019 | 0.081 | |
股直肌 | 任务 | 2 | 26.014 | < 0.001 | 0.173 |
年龄 | 5 | 4.705 | 0.001 | 0.159 | |
任务×年龄 | 10 | 3.476 | < 0.001 | 0.123 | |
臀大肌上束 | 任务 | 2 | 46.110 | < 0.001 | 0.271 |
年龄 | 5 | 14.362 | < 0.001 | 0.367 | |
任务×年龄 | 10 | 3.287 | 0.001 | 0.117 |
表9
不同年龄和任务下CV比较 单位:%"
组别 | n | 标准 | 认知 | 越障 | |||||
---|---|---|---|---|---|---|---|---|---|
步速 | 步幅 | 步速 | 步幅 | 步速 | 步幅 | ||||
3岁组 | 30 | 16.05 | 15.09 | 22.87 | 16.75 | 22.08 | 14.68 | ||
4岁组 | 32 | 19.31 | 10.95 | 21.34 | 17.32 | 22.98 | 12.40 | ||
5岁组 | 30 | 16.92 | 11.34 | 19.03 | 14.92 | 19.11 | 11.33 | ||
6岁组 | 30 | 16.67 | 15.50 | 17.85 | 14.18 | 17.34 | 13.43 | ||
7岁组 | 30 | 16.46 | 10.98 | 15.09 | 14.91 | 15.27 | 13.33 | ||
8岁组 | 30 | 11.50 | 9.46 | 14.60 | 11.55 | 12.60 | 9.65 | ||
合计 | 182 | 16.15 | 12.22 | 18.46 | 14.94 | 18.23 | 12.47 |
表10
不同年龄和任务下步态TC的比较 单位:%"
组别 | n | 步速 | 步幅 | |||
---|---|---|---|---|---|---|
认知 | 越障 | 认知 | 越障 | |||
3岁组 | 30 | 22.87±9.25 | 18.99±11.34 | 16.97±7.02 | 12.08±9.72 | |
4岁组 | 32 | 18.81±8.40 | 15.73±13.15 | 15.13±7.63 | 11.61±8.57 | |
5岁组 | 30 | 19.33±6.45 | 16.59±10.77 | 13.45±6.01 | 9.23±5.96 | |
6岁组 | 30 | 18.20±10.95 | 12.49±8.01a | 12.86±5.81 | 10.11±7.52 | |
7岁组 | 30 | 17.91±9.28 | 13.81±12.12 | 12.69±5.41a | 7.85±9.29 | |
8岁组 | 30 | 16.12±7.06 | 10.21±6.29a | 12.53±5.71a | 7.30±7.78 | |
合计 | 182 | 18.86±8.80① | 14.63±10.80 | 13.95±6.45① | 9.71±8.31 |
[1] |
VERBECQUE E, VEREECK L, HALLEMANS A. Postural sway in children: a literature review[J]. Gait Posture, 2016, 49: 402-410.
doi: S0966-6362(16)30479-9 pmid: 27505144 |
[2] |
MAIANO C, HUE O, APRIL J. Effects of motor skill interventions on fundamental movement skills in children and adolescents with intellectual disabilities: a systematic review[J]. J Intellect Disabil Res, 2019, 63(9): 1163-1179.
doi: 10.1111/jir.v63.9 |
[3] |
OKUR E O, ARIK M I, OKUR I, et al. Dual-task training effect on gait parameters in children with spastic diplegic cerebral palsy: preliminary results of a self-controlled study[J]. Gait Posture, 2022, 94: 45-50.
doi: 10.1016/j.gaitpost.2022.02.020 pmid: 35247824 |
[4] |
ROOSTAEI M, RAJI P, MORONE G, et al. The effect of dual-task conditions on gait and balance performance in children with cerebral palsy: a systematic review and meta-analysis of observational studies[J]. J Bodyw Mov Ther, 2021, 26: 448-462.
doi: 10.1016/j.jbmt.2020.12.011 pmid: 33992282 |
[5] | BAEK C Y, CHANG W N, PARK B Y, et al. Effects of dual-task gait treadmill training on gait ability, dual-task interference, and fall efficacy in people with stroke: a randomized controlled trial[J]. Phys Ther, 2021, 101(6): pzab067. |
[6] |
HUNG Y C, MEREDITH G S, GILL S V. Influence of dual task constraints during walking for children[J]. Gait Posture, 2013, 38(3): 450-454.
doi: 10.1016/j.gaitpost.2013.01.009 |
[7] |
ABBRUZZESE L D, RAO A K, BELLOWS R, et al. Effects of manual task complexity on gait parameters in school-aged children and adults[J]. Gait Posture, 2014, 40(4): 658-663.
doi: 10.1016/j.gaitpost.2014.07.017 pmid: 25168911 |
[8] |
HUANG H J, MERCER V S. Dual-task methodology: applications in studies of cognitive and motor performance in adults and children[J]. Pediatr Phys Ther, 2001, 13(3): 133-140.
pmid: 17053670 |
[9] |
MALONE A, KIERNAN D, FRENCH H, et al. Obstacle crossing during gait in children with cerebral palsy: cross-sectional study with kinematic analysis of dynamic balance and trunk control[J]. Phys Ther, 2016, 96(8): 1208-1215.
doi: 10.2522/ptj.20150360 pmid: 26893506 |
[10] |
SCHAEFER S, LINDENBERGER U. Thinking while walking: experienced high-heel walkers flexibly adjust their gait[J]. Front Psychol, 2013, 4: 316.
doi: 10.3389/fpsyg.2013.00316 pmid: 23760158 |
[11] |
KELLY V E, JANKE A A, SHUMWAY-COOK A. Effects of instructed focus and task difficulty on concurrent walking and cognitive task performance in healthy young adults[J]. Exp Brain Res, 2010, 207(1/2): 65-73.
doi: 10.1007/s00221-010-2429-6 |
[12] |
PENG Y, ZHANG Z, GAO Y, et al. Concurrent prediction of ground reaction forces and moments and tibiofemoral contact forces during walking using musculoskeletal modelling[J]. Med Eng Phys, 2018, 52: 31-40.
doi: S1350-4533(17)30297-7 pmid: 29269224 |
[13] |
TRINLER U, SCHWAMEDER H, BAKER R, et al. Muscle force estimation in clinical gait analysis using AnyBody and OpenSim[J]. J Biomech, 2019, 86: 55-63.
doi: S0021-9290(19)30082-X pmid: 30739769 |
[14] | HAUDENSCHILD A, HULL M. Optimized joint coordinate system achieves clinically meaningful kinematics of the tibiofemoral joint as compared to the International Society of Biomechanics (ISB) Recommendation[J]. [ahead of print]. J Biomech Eng, 2022. doi: 10.1115/1.4053750. |
[15] |
SATO H, NOMURA Y, KAMIDE K. Relationship between static balance and gait parameters in preschool children[J]. Gait Posture, 2022, 96: 143-148.
doi: 10.1016/j.gaitpost.2022.05.029 pmid: 35660238 |
[16] |
HUANG H J, MERCER V S, THORPE D E. Effects of different concurrent cognitive tasks on temporal-distance gait variables in children[J]. Pediatr Phys Ther, 2003, 15: 105-113.
doi: 10.1097/01.PEP.0000067886.96352.6B |
[17] |
HORSAK B, SCHWAB C, BACA A, et al. Effects of a lower extremity exercise program on gait biomechanics and clinical outcomes in children and adolescents with obesity: a randomized controlled trial[J]. Gait Posture, 2019, 70: 122-129.
doi: S0966-6362(18)31334-1 pmid: 30851623 |
[18] |
SYLOS-LABINI F, ZAGO M, GUERTIN P A, et al. Muscle coordination and locomotion in humans[J]. Curr Pharm Des, 2017, 23(12): 1821-1833.
doi: 10.2174/1381612823666170125160820 |
[19] |
FUKUCHI C A, FUKUCHI R K, DUARTE M. Effects of walking speed on gait biomechanics in healthy participants: a systematic review and meta-analysis[J]. Syst Rev, 2019, 8(1): 153-154.
doi: 10.1186/s13643-019-1063-z |
[20] |
DIOP M, RAHMANI A, BELLI A, et al. Influence of speed variation and age on ground reaction forces and stride parameters of children's normal gait[J]. Int J Sports Med, 2005, 26(8): 682-687.
pmid: 16158375 |
[21] |
MENTIPLAY B F, BANKY M, CLARK R A, et al. Lower limb angular velocity during walking at various speeds[J]. Gait Posture, 2018, 65: 190-196.
doi: S0966-6362(18)30240-6 pmid: 30558929 |
[22] |
KAO P C, HIGGINSON C I, SEYMOUR K, et al. Walking stability during cell phone use in healthy adults[J]. Gait Posture, 2015, 41(4): 947-953.
doi: 10.1016/j.gaitpost.2015.03.347 |
[23] | SHUMWAY-COOK A, WOOLLACOTT M H. 运动控制原理与实践[M]. 毕胜,燕铁斌,王宁华,译. 北京: 人民卫生出版社, 2009. |
SHUMWAY-COOK A, WOOLLACOTT M H. Motor control: translating research into clinical practice[M]. BIS, YANT B,WANG N H, trans trans. Beijing: People's Medical Publishing House, 2009. | |
[24] |
SCHLOEMER S A, THOMPSON J A, SILDER A, et al. Age-related differences in gait kinematics, kinetics, and muscle function: a principal component analysis[J]. Ann Biomed Eng, 2017, 45(3): 695-710.
doi: 10.1007/s10439-016-1713-4 pmid: 27573696 |
[25] | PERRY J, BURNFIELD J M. 步态分析:正常和病理功能[M]. 姜淑云,译. 上海: 上海科学技术出版社, 2017. |
PERRY J, BURNFIELD J M. Gait analysis: normal and pathological function[M]. JIANG S Y, trans trans. Shanghai: Shanghai Scientific and Technical Publishers, 2017. | |
[26] | NEUMANN D A. 骨骼肌肉功能解剖学[M]. 刘颖,师玉涛,闫琪,译. 北京: 人民军医出版社, 2014. |
NEUMANN D A. Kinesiology of the musculoskeletal system foundations for rehabilitation[M]. LIUY, SHIY T,YAN Q, trans trans. Beijing: People's Army Medical Press, 2014. | |
[27] | BURKETT B. 实用运动生物力学教程[M]. 马运超,译. 北京: 人民邮电出版社, 2021. |
BURKETT B. Practical sports biomechanical tutorial[M]. MA Y C, trans trans. Beijing: Posts and Telecommunications Press, 2021. | |
[28] |
HALLEMANS A, DE CLERCQ D, AERTS P. Changes in 3D joint dynamics during the first 5 months after the onset of independent walking: a longitudinal follow-up study[J]. Gait Posture, 2006, 24(3): 270-279.
doi: 10.1016/j.gaitpost.2005.10.003 pmid: 16314099 |
[29] |
MANI H, MIYAGISHIMA S, KOZUKA N, et al. Development of the relationships among dynamic balance control, inter-limb coordination, and torso coordination during gait in children aged 3-10 years[J]. Front Hum Neurosci, 2021, 15: 740509.
doi: 10.3389/fnhum.2021.740509 |
[30] | HAGMANN-VON ARX P, MANICOLO O, LEMOLA S, et al. Walking in school-aged children in a dual-task paradigm is related to age but not to cognition, motor behavior, injuries, or psychosocial functioning[J]. Front Psychol, 2016, 7: 352. |
[31] |
FUJIWARA S, SATO S, SUGAWARA A, et al. The coefficient of variation of step time can overestimate gait abnormality: test-retest reliability of gait-related parameters obtained with a tri-axial accelerometer in healthy subjects[J]. Sensors (Basel), 2020, 20(3): 577.
doi: 10.3390/s20030577 |
[32] | 梁晓, 赵盼超, 李嘉慧, 等. 4-6岁幼儿多任务行走的步态及下肢生物力学特征[J]. 中国组织工程研究, 2023, 27(4): 505-512. |
LIANG X, ZHAO P C, LI J H, et al. Gait and biomechanical characteristics of lower limbs in multi-task walking of 4-6-year-old children[J]. Chin J Tiss Eng Res, 2023, 27(4): 505-512. | |
[33] |
BAUBY C E, KUO A D. Active control of lateral balance in human walking[J]. J Biomech, 2000, 33(11): 1433-1440.
doi: 10.1016/s0021-9290(00)00101-9 pmid: 10940402 |
[34] |
GHAI S, GHAI I, EFFENBERG A O. Effects of dual tasks and dual-task training on postural stability: a systematic review and meta-analysis[J]. Clin Interv Aging, 2017, 12: 557-577.
doi: 10.2147/CIA.S125201 pmid: 28356727 |
[35] |
SAN MARTÍN VALENZUELA C, MOSCARDÓ L D, LÓPEZ-PASCUAL J, et al. Effects of dual-task group training on gait, cognitive executive function, and quality of life in people with Parkinson disease: results of randomized controlled dual gait trial[J]. Arch Phys Med Rehabil, 2020, 101(11): 1849-1856.
doi: 10.1016/j.apmr.2020.07.008 |
[1] | 宋以玲, 任园春, 朱飞龙, 匡冬青, 曹庆久, 林杨, 王芳. 注意缺陷多动障碍儿童粗大动作技能与执行功能发展的特点及关系[J]. 《中国康复理论与实践》, 2024, 30(1): 1-9. |
[2] | 罗丽华, 王雨生, 李剑锋, 董继革. 术后早期综合康复对儿童青少年肱骨髁上骨折伴尺神经损伤的效果[J]. 《中国康复理论与实践》, 2024, 30(1): 105-110. |
[3] | 郝传萍. 教育情境下辅助技术应用:政策架构与核心领域[J]. 《中国康复理论与实践》, 2024, 30(1): 119-124. |
[4] | 闻嘉宁, 金秋艳, 张琦, 李杰, 司琦. 认知参与型身体活动对发展儿童青少年执行功能的效果:基于ICF的系统综述[J]. 《中国康复理论与实践》, 2024, 30(1): 44-53. |
[5] | 张婧雅, 邹敏, 孙宏伟, 孙昌隆, 朱峻同. 听障儿童青少年焦虑或抑郁情绪心理干预效果的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1004-1011. |
[6] | 王俊宇, 杨永, 袁逊, 谢婷, 庄洁. 高强度间歇训练对健康儿童青少年执行功能效果的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1012-1020. |
[7] | 毕小羽, 朱笑彤, 朱飞龙, 匡冬青, 宋以玲, 范碧瑶, 任园春. 注意缺陷多动障碍学龄儿童精细动作技能的性别差异[J]. 《中国康复理论与实践》, 2023, 29(9): 1029-1034. |
[8] | 胡晓诗, 张琦, 岳青, 梁艳华, 李晓松, 冯啊美, 张燕庆. 矫形弹力绷带对痉挛性偏瘫脑性瘫痪患儿步态对称性和步行能力的效果[J]. 《中国康复理论与实践》, 2023, 29(9): 1083-1089. |
[9] | 王少璞, 杨亚茹, 邱卓英, 杨剑, 姚梅林, 孙宏伟, 邹敏. 智力与发展性残疾儿童心理健康服务:基于WHO-FICs的研究[J]. 《中国康复理论与实践》, 2023, 29(9): 993-1003. |
[10] | 马圣楠, 柯竟悦, 董洪铭, 李建萍, 张洪浩, 刘超, 沈双, 李古强. 核心稳定性训练干预前交叉韧带重建术后动态平衡及表面肌电的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 882-889. |
[11] | 张意彬, 吕杰, 喻洪流. 基于模糊逻辑算法的智能膝关节假肢步态相位识别[J]. 《中国康复理论与实践》, 2023, 29(8): 896-902. |
[12] | 魏晓微, 杨剑, 魏春艳, 贺启令. 学校环境下适应性体育课程促进智力与发展性残疾儿童心理运动发展的系统综述[J]. 《中国康复理论与实践》, 2023, 29(8): 910-918. |
[13] | 石孝宇, 杨剑. 适用于残疾儿童青少年身体活动测量报告工具结构、内容及心理测量特性的系统综述[J]. 《中国康复理论与实践》, 2023, 29(6): 621-629. |
[14] | 刘辉, 尹航, 贾绍辉, 邱服冰. 适用于残疾儿童青少年运动功能和运动能力测量工具的结构、内容和心理测量特性的系统综述[J]. 《中国康复理论与实践》, 2023, 29(6): 630-638. |
[15] | 王一吉, 周红俊, 何泽佳, 刘根林, 郑樱, 郝春霞, 卫波, 康海琼, 张缨, 逯晓蕾, 袁媛, 蒙倩茹. 不完全性脊髓损伤患者运动功能对称性与步态对称性的关系[J]. 《中国康复理论与实践》, 2023, 29(6): 639-645. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|