《中国康复理论与实践》 ›› 2023, Vol. 29 ›› Issue (8): 896-902.doi: 10.3969/j.issn.1006-9771.2023.08.005

• 专题 运动和平衡功能康复 • 上一篇    下一篇

基于模糊逻辑算法的智能膝关节假肢步态相位识别

张意彬1,2, 吕杰1, 喻洪流2()   

  1. 1.上海健康医学院医疗器械学院,上海市 201318
    2.上海理工大学健康科学与工程学院,上海市 200093
  • 收稿日期:2023-03-20 修回日期:2023-06-26 出版日期:2023-08-25 发布日期:2023-10-09
  • 通讯作者: 喻洪流 E-mail:yhl98@hotmail.com
  • 作者简介:张意彬(1979-),男,蒙古族,内蒙古赤峰市人,硕士,主要研究方向:康复工程。
  • 基金资助:
    国家自然科学基金项目(62073224)

Gait phase recognition in intelligent above-knee prosthesis based on fuzzy logic algorithm

ZHANG Yibin1,2, LÜ Jie1, YU Hongliu2()   

  1. 1. Medical Instruments Institute, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
    2. School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2023-03-20 Revised:2023-06-26 Published:2023-08-25 Online:2023-10-09
  • Contact: YU Hongliu E-mail:yhl98@hotmail.com
  • Supported by:
    National Natural Science Foundation of China(62073224)

摘要:

目的 针对智能膝关节假肢控制策略切换的需要,以人体行走的足底压力为研究对象,以模糊逻辑算法为基础,提出一种基于假肢足底压力信息的步态相位划分方法。
方法 利用安装在假脚足底的3个薄膜压力传感器采集测试对象在3种不同行走模式(平路行走、下坡行走、下楼行走)下的足底压力信息,经数据融合处理后,送入模糊逻辑控制器,建立IF-THEN规则,通过调整灵敏度系数Ai以及比例系数Bi,输出识别结果。
结果 经过对5例健康人的模拟测试,平路行走、下楼行走和下坡行走的步态相位识别准确率分别为(95.3±2.4)%、(81.5±6.3)%和(90.7±3.5)%。
结论 最终的识别准确率满足使用需求,该方法可以在智能膝关节假肢的步态相位识别中应用。

关键词: 膝关节假肢, 步态检测, 足底反力, 模糊逻辑, 步态相位

Abstract:

Objective Aiming at the need of control strategy switching of intelligent above-knee prosthetic, taking the plantar pressure of human walking as the research object, and based on fuzzy logic algorithm, a gait phase division method based on plantar pressure of prosthetic is proposed.
Methods Three flexible force sensors installed on the soles of the false feet were used to collect the plantar pressure information of the test object under three different walking modes (walking on the flat road, walking downhill and walking down the stairs). After data fusion processing, it was sent to the fuzzy logic controller, and the recognition results were output according to the IF-THEN rule, the scale and sensitivity factor.
Results Through the testing of five healthy people as substitute, the results showed that the accuracy of gait phase recognition for walking on the flat road, walking down the stairs and walking downhill were (95.3±2.4)%, (81.5±6.3)% and (90.7±3.5)%, respectively.
Conclusion The accuracy of recognition basically meets the requirements in this project. This method can be applied in the gait phase recognition of intelligent above-knee prosthetic.

Key words: above-knee prostheses, gait detection, ground reaction force, fuzzy logic, gait phase

中图分类号: