《中国康复理论与实践》 ›› 2023, Vol. 29 ›› Issue (7): 782-790.doi: 10.3969/j.issn.1006-9771.2023.07.007
崔尧1,2, 丛芳1,2(), 黄富表1,2, 曾明3, 颜如秀1,2
收稿日期:
2023-02-28
修回日期:
2023-04-10
出版日期:
2023-07-25
发布日期:
2023-08-30
通讯作者:
丛芳(1966-),女,汉族,辽宁大连市人,博士,主任医师、教授,主要研究方向:康复医学与理疗学。E-mail: 作者简介:
崔尧(1988-),男,汉族,陕西西安市人,硕士,主管治疗师、讲师,主要研究方向:康复治疗学。
基金资助:
CUI Yao1,2, CONG Fang1,2(), HUANG Fubiao1,2, ZENG Ming3, YAN Ruxiu1,2
Received:
2023-02-28
Revised:
2023-04-10
Published:
2023-07-25
Online:
2023-08-30
Contact:
CONG Fang, E-mail: Supported by:
摘要:
目的 采用功能性近红外光谱(fNIRS)和表面肌电图(sEMG)探索动作观察(AO)、动作执行(AE)、动作模仿(AO+AE) 3种基于镜像神经元系统(MNS)训练策略的运动控制机制。
方法 2022年7月至2023年2月,选择64例健康成年人,采用区组设计,完成单纯观看风景视频(对照)、观看风景视频时右手伸腕伸指(AE)、单纯观看右手伸腕伸指视频(AO)、观看右手伸腕伸指视频时右手伸腕伸指(AO+AE) 4项任务,每项任务5个试次一组,随机出现不同的视频,循环8次,每次循环任务顺序随机。同步采用fNIRS采取左侧MNS各通道及感兴趣区(ROI) BA40、BA44、BA45、BA46、BA6、BA7的激活信号,采用sEMG检测指伸肌、桡侧腕伸肌的平均肌电值(AEMG)。
结果 与对照条件相比,AO、AE和AO+AE时均可诱发MNS激活,且强度呈递增趋势。与对照条件相比,AO时15个通道激活(q < 0.05);AE时15个通道激活(q < 0.05);AO+AE时20个通道全部激活(q < 0.05);多数通道激活强度AO+AE > AE > AO。AO时,BA40、BA46、BA6和BA7共4个ROI激活(q < 0.05);AE和AO+AE时,6个ROI均激活(q < 0.05);多数ROI激活强度AO+AE > AE > AO。AO+AE时,指伸肌和桡侧腕伸肌的标准化AEMG均大于AE时(|t| > 4.24, P < 0.001)。
结论 动作观察、执行、模仿时,MNS系统均激活,且激活的范围和强度呈依次递增趋势。与动作执行相比,动作模仿时目标肌肉的激活更强。fNIRS同步sEMG可用于观察基于镜像神经元理论康复策略的神经机制研究。
中图分类号:
崔尧, 丛芳, 黄富表, 曾明, 颜如秀. 不同镜像神经元训练策略下脑与肌肉的活动特征:基于近红外光谱与表面肌电图技术[J]. 《中国康复理论与实践》, 2023, 29(7): 782-790.
CUI Yao, CONG Fang, HUANG Fubiao, ZENG Ming, YAN Ruxiu. Brain and muscle activation under mirror neuron-based training strategies: a near-infrared spectroscopy and surface electromyography study[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 782-790.
表2
各通道S与D中点的MNI坐标"
通道 | X | Y | Z | 通道 | X | Y | Z |
---|---|---|---|---|---|---|---|
S1-D1 | -40.028 | 82.122 | 29.995 | S4-D6 | -64.562 | -23.221 | 46.414 |
S1-D2 | -55.094 | 68.108 | 24.682 | S5-D6 | -72.278 | -37.100 | 25.118 |
S1-D3 | -53.044 | 50.848 | 42.793 | S6-D5 | -31.636 | -28.475 | 71.383 |
S2-D2 | -69.006 | 52.147 | 12.293 | S6-D6 | -47.704 | -45.059 | 55.802 |
S2-D3 | -67.058 | 34.678 | 30.363 | S6-D7 | -11.015 | -49.032 | 71.726 |
S3-D3 | -43.666 | 32.288 | 59.292 | S6-D8 | -28.389 | -63.383 | 55.839 |
S3-D4 | -10.188 | 31.269 | 75.013 | S7-D6 | -58.204 | -56.894 | 34.052 |
S3-D5 | -30.482 | 11.346 | 73.230 | S7-D8 | -38.971 | -75.034 | 34.184 |
S4-D3 | -62.067 | 14.253 | 48.546 | S8-D7 | 8.628 | -65.081 | 61.791 |
S4-D5 | -49.037 | -6.785 | 62.588 | S8-D8 | -8.732 | -78.971 | 45.761 |
表3
AO时显著激活的通道(与LO相比)"
通道 | β | SE | t值 | q值 | 通道 | β值 | SE | t值 | q值 | 通道 | β值 | SE | t值 | q值 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1-D2 | 1.59 | 0.61 | 2.61 | 0.017 | S4-D5 | 3.24 | 0.82 | 3.97 | < 0.001 | S6-D8 | 3.52 | 0.76 | 4.64 | < 0.001 |
S1-D3 | 2.55 | 0.92 | 2.78 | 0.011 | S4-D6 | 3.82 | 0.86 | 4.46 | < 0.001 | S7-D6 | 3.63 | 1.24 | 2.93 | 0.007 |
S2-D3 | 1.78 | 0.72 | 2.47 | 0.025 | S5-D6 | 2.91 | 0.82 | 3.56 | < 0.001 | S7-D8 | 4.20 | 0.98 | 4.28 | < 0.001 |
S3-D5 | 3.58 | 0.96 | 3.73 | < 0.001 | S6-D5 | 4.66 | 0.99 | 4.72 | < 0.001 | S8-D7 | 4.80 | 1.09 | 4.40 | < 0.001 |
S4-D3 | 2.35 | 0.84 | 2.79 | 0.011 | S6-D6 | 2.18 | 0.90 | 2.41 | 0.028 | S8-D8 | 2.65 | 1.18 | 2.25 | 0.041 |
表4
AE时显著激活的通道(与LO相比)"
通道 | β值 | SE | t值 | q值 | 通道 | β值 | SE | t值 | q值 | 通道 | β值 | SE | t值 | q值 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1-D1 | 3.17 | 0.88 | 3.62 | < 0.001 | S3-D4 | 3.27 | 0.79 | 4.16 | < 0.001 | S5-D6 | 3.38 | 0.81 | 4.16 | < 0.001 |
S1-D2 | 2.41 | 0.61 | 3.97 | < 0.001 | S3-D5 | 5.26 | 0.95 | 5.51 | < 0.001 | S7-D6 | 6.31 | 1.24 | 5.10 | < 0.001 |
S1-D3 | 4.20 | 0.91 | 4.61 | < 0.001 | S4-D3 | 6.98 | 0.83 | 8.38 | < 0.001 | S7-D8 | 6.41 | 0.98 | 6.57 | < 0.001 |
S2-D3 | 5.55 | 0.70 | 7.90 | < 0.001 | S4-D5 | 7.24 | 0.80 | 9.02 | < 0.001 | S8-D7 | 6.70 | 1.09 | 6.14 | < 0.001 |
S3-D3 | 4.72 | 0.83 | 5.69 | < 0.001 | S4-D6 | 6.57 | 0.85 | 7.70 | < 0.001 | S8-D8 | 4.84 | 1.18 | 4.09 | < 0.001 |
表5
AO+AE时显著激活的通道(与LO相比)"
通道 | β值 | SE | t值 | q值 | 通道 | β值 | SE | t值 | q值 | 通道 | β值 | SE | t值 | q值 | 通道 | β值 | SE | t值 | q值 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1-D1 | 4.49 | 0.87 | 5.18 | < 0.001 | S3-D3 | 7.17 | 0.84 | 8.59 | < 0.001 | S4-D6 | 6.59 | 0.85 | 7.72 | < 0.001 | S6-D8 | 3.74 | 0.76 | 4.91 | < 0.001 |
S1-D2 | 3.01 | 0.61 | 4.95 | < 0.001 | S3-D4 | 5.60 | 0.79 | 7.10 | < 0.001 | S5-D6 | 6.09 | 0.81 | 7.51 | < 0.001 | S7-D6 | 6.84 | 1.23 | 5.56 | < 0.001 |
S1-D3 | 3.86 | 0.92 | 4.22 | < 0.001 | S3-D5 | 5.63 | 0.95 | 5.91 | < 0.001 | S6-D5 | 6.14 | 0.99 | 6.22 | < 0.001 | S7-D8 | 7.88 | 0.98 | 8.01 | < 0.001 |
S2-D2 | 2.77 | 0.80 | 3.46 | 0.001 | S4-D3 | 6.51 | 0.83 | 7.86 | < 0.001 | S6-D6 | 5.08 | 0.90 | 5.68 | < 0.001 | S8-D7 | 6.72 | 1.09 | 6.18 | < 0.001 |
S2-D3 | 6.84 | 0.70 | 9.73 | < 0.001 | S4-D5 | 8.84 | 0.82 | 10.73 | < 0.001 | S6-D7 | 2.76 | 0.81 | 3.41 | 0.002 | S8-D8 | 5.50 | 1.19 | 4.63 | < 0.001 |
[1] | 崔尧, 丛芳, 刘霖. 镜像神经元系统的基本理论及其在运动功能康复中的意义[J]. 中国康复理论与实践, 2012, 18(3): 239-243. |
CUI Y, CONG F, LIU L. Basic theory of mirror neuron system and its meanings in motor rehabilitation[J]. Chin J Rehabil Theory Pract, 2012, 18(3): 239-243. | |
[2] |
SADEGHI S, SCHMIDT S N L, MIER D, et al. Effective connectivity of the human mirror neuron system during social cognition[J]. Soc Cogn Affect Neur, 2022, 17(8): 732-743.
doi: 10.1093/scan/nsab138 |
[3] | JOHNSON C, KLINGELS K, VERBECQUE E, et al. Feasibility of fNIRS in children with developmental coordination disorder[J]. Eur Psychiat, 2022, 65(Suppl 1): S53-S54. |
[4] | SUN P P, TAN F L, ZHANG Z, et al. Feasibility of functional near-infrared spectroscopy (fNIRS) to investigate the mirror neuron system: an experimental study in a real-life situation[J]. Front Hum Neurosci, 2018, 12: 86. |
[5] |
BRUCKER B, DE KONING B, ROSENBAUM D, et al. The influence of gestures and visuospatial ability during learning about movements with dynamic visualizations: an fNIRS study[J]. Comput Hum Behav, 2022, 129: 107151.
doi: 10.1016/j.chb.2021.107151 |
[6] |
SATTAR N Y, KAUSAR Z, USAMA S A, et al. fNIRS-based upper limb motion intention recognition using an artificial neural network for transhumeral amputees[J]. Sensors, 2022, 22(3): 726.
doi: 10.3390/s22030726 |
[7] |
QIU Y, ZHENG Y, LIU Y, et al. Synergistic immediate cortical activation on mirror visual feedback combined with a soft robotic bilateral hand rehabilitation system: a functional near infrared spectroscopy study[J]. Front Neurosci, 2022, 16: 807045.
doi: 10.3389/fnins.2022.807045 |
[8] |
NGUYEN T, MIGUEL H O, CONDY E E, et al. Using functional connectivity to examine the correlation between mirror neuron network and autistic traits in a typically developing sample: a fNIRS study[J]. Brain Sci, 2021, 11(3): 397.
doi: 10.3390/brainsci11030397 |
[9] |
ATIQUE M M U, FRANCIS J T. Mirror neurons are modulated by grip force and reward expectation in the sensorimotor cortices (S1, M1, PMd, PMv)[J]. Sci Rep, 2021, 11(1): 15959.
doi: 10.1038/s41598-021-95536-z pmid: 34354213 |
[10] | BAI Z, FONG K N K, ZHANG J, et al. Cortical mapping of mirror visual feedback training for unilateral upper extremity: a functional near-infrared spectroscopy study[J]. Brain Behav, 2020, 10(1): e01489. |
[11] |
NEGRO F, BATHON K E, NGUYEN J N, et al. Impaired firing behavior of individually tracked paretic motor units during fatiguing contractions of the dorsiflexors and functional implications post stroke[J]. Front Neurol, 2020, 11: 540893.
doi: 10.3389/fneur.2020.540893 |
[12] |
DE CAMPOS A C, SUKAL-MOULTON T, HUPPERT T, et al. Brain activation patterns underlying upper limb bilateral motor coordination in unilateral cerebral palsy: an fNIRS study[J]. Dev Med Child Neurol, 2020, 62(5): 625-632.
doi: 10.1111/dmcn.14458 pmid: 32034770 |
[13] |
PEIRCE J, GRAY J R, SIMPSON S, et al. PsychoPy2: experiments in behavior made easy[J]. Behav Res Methods, 2019, 51(1): 195-203.
doi: 10.3758/s13428-018-01193-y pmid: 30734206 |
[14] | 中国康复研究中心. 基于镜像神经元理论的视频动作观察与模仿疗法脑肌激活水平康复评定实验引导与练习系统:2023SR0449357[CP]. 2023-04-07. |
[15] | 中国康复研究中心. 基于镜像神经元理论的视频动作观察与模仿疗法脑肌激活水平康复评定系统:2023SR0449359[CP]. 2023-04-07. |
[16] | PEIRCE J, MACASKILL M. Building experiments in Psychopy[M]. Los Angeles: Sage, 2018. |
[17] | YÜCEL M A, LÜHMANN A V, SCHOLKMANN F, et al. Best practices for fNIRS publications[J]. Neurophotonics, 2021, 8(1): 012101. |
[18] | FORBES S H, WIJEAKUMAR S, EGGEBRECHT A T, et al. Processing pipeline for image reconstructed fNIRS analysis using both MRI templates and individual anatomy[J]. Neurophotonics, 2021, 8(2): 025010. |
[19] | 朱朝喆. 近红外光谱脑功能成像[M]. 北京: 科学出版社, 2020. |
ZHU C Z. Functional near-infrared spectroscopy[M]. Beijing: Science Press, 2020. | |
[20] |
SANTOSA H, ZHAI X, FISHBURN F, et al. The NIRS Brain AnalyzIR Toolbox[J]. Algorithms, 2018, 11(5): 73.
doi: 10.3390/a11050073 |
[21] | 李建华, 王健. 表面肌电图诊断技术临床应用[M]. 杭州: 浙江大学出版社, 2015. |
LI J H, WANG J. Applications of sEMG in clinical diagnosis and evaluations[M]. Hangzhou: Zhejiang University Press, 2015. | |
[22] |
BHAT A N, HOFFMAN M D, TROST S L, et al. Cortical activation during action observation, action execution, and interpersonal synchrony in adults: a functional near-infrared spectroscopy (fNIRS) study[J]. Front Hum Neurosci, 2017, 11: 431.
doi: 10.3389/fnhum.2017.00431 pmid: 28928646 |
[23] |
CONDY E E, MIGUEL H O, MILLERHAGEN J, et al. Characterizing the action-observation network through functional near-infrared spectroscopy: a review[J]. Front Hum Neurosci, 2021, 15: 627983.
doi: 10.3389/fnhum.2021.627983 |
[24] |
FU J, ZENG M, SHEN F, et al. Effects of action observation therapy on upper extremity function, daily activities and motion evoked potential in cerebral infarction patients[J]. Medicine (Baltimore), 2017, 96(42): e8080.
doi: 10.1097/MD.0000000000008080 |
[25] |
RYAN D, O'DONOGHUE G, RIO E, et al. The effect of combined action observation therapy with eccentric exercises in the treatment of mid-portion achilles-tendinopathy: a feasibility pilot randomised controlled trial[J]. BMC Sports Sci Med Rehabil, 2022, 14: 201.
doi: 10.1186/s13102-022-00594-z pmid: 36447250 |
[26] |
XU Z, HU M, WANG Z R, et al. The positive effect of moderate-intensity exercise on the mirror neuron system: an fNIRS study[J]. Front Psychol, 2019, 10: 986.
doi: 10.3389/fpsyg.2019.00986 pmid: 31130900 |
[27] |
XU Z, WANG Z R, LI J, et al. Effect of acute moderate-intensity exercise on the mirror neuron system: role of cardiovascular fitness level[J]. Front Psychol, 2020, 11: 312.
doi: 10.3389/fpsyg.2020.00312 pmid: 32153482 |
[28] |
PENG T H, ZHU J D, CHEN C C, et al. Action observation therapy for improving arm function, walking ability, and daily activity performance after stroke: a systematic review and meta-analysis[J]. Clin Rehabil, 2019, 33(8): 1277-1285.
doi: 10.1177/0269215519839108 |
[29] |
HIOKA A, TADA Y, KITAZATO K, et al. Action observation treatment improves gait ability in subacute to convalescent stroke patients[J]. J Clin Neurosci, 2020, 75: 55-61.
doi: S0967-5868(20)30098-9 pmid: 32234334 |
[30] |
KHAN R A, NASEER N, QURESHI N K, et al. fNIRS-based neurorobotic interface for gait rehabilitation[J]. J Neuroeng Rehabil, 2018, 15(1): 7.
doi: 10.1186/s12984-018-0346-2 pmid: 29402310 |
[31] |
REED C A, DUBOIS C K, HUTCHISON K A, et al. Influence of serial subtraction tasks on transient characteristics of postural control[J]. Hum Mov Sci, 2022, 83: 102950.
doi: 10.1016/j.humov.2022.102950 |
[32] |
BUCHIGNANI B, BEANI E, POMEROY V, et al. Action observation training for rehabilitation in brain injuries: a systematic review and meta-analysis[J]. BMC Neurol, 2019, 19(1): 344.
doi: 10.1186/s12883-019-1533-x pmid: 31881854 |
[33] |
WANG J, LIU J, LAI K, et al. Mirror mechanism behind visual-auditory interaction: evidence from event-related potentials in children with cochlear implants[J]. Front Neurosci, 2021, 15: 692520.
doi: 10.3389/fnins.2021.692520 |
[34] |
KHAKSARI K, SMITH E G, MIGUEL H O, et al. An fNIRS study of brain lateralization during observation and execution of a fine motor task[J]. Front Hum Neurosci, 2022, 15: 798870.
doi: 10.3389/fnhum.2021.798870 |
[1] | 陈珺雯, 陈谦, 陈程, 李淑月, 刘玲玲, 吴存书, 龚翔, 鲁俊, 许光旭. 改良八段锦身体活动对脑卒中患者心肺功能、运动功能和日常生活活动能力的效果[J]. 《中国康复理论与实践》, 2024, 30(1): 74-80. |
[2] | 孙藤方, 任梦婷, 杨琳, 王耀霆, 王红雨, 闫兴洲. 高压氧治疗联合重复外周磁刺激干预脑卒中患者踝运动功能和平衡能力的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 875-881. |
[3] | 王亚楠, 刘西花. 脑卒中偏瘫患者主观和客观平衡功能测量的相关性及预测效能[J]. 《中国康复理论与实践》, 2023, 29(8): 890-895. |
[4] | 王海云, 王寅, 周信杰, 何爱群. 基于“中枢-外周-中枢”理论的经颅直流电刺激结合针刺干预脑卒中患者中枢及上肢功能的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 919-925. |
[5] | 陈怡婷, 王倩, 崔慎红, 李映彩, 张思鈺, 魏衍旭, 任慧, 冷军, 陈斌. 双侧序贯重复经颅磁刺激干预脑卒中患者上肢运动功能的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 926-932. |
[6] | 李芳, 霍速, 杜巨豹, 刘秀贞, 李小爽, 宋为群. 经颅直流电刺激联合任务导向性康复训练对脊髓损伤大鼠前肢运动障碍的效果[J]. 《中国康复理论与实践》, 2023, 29(7): 777-781. |
[7] | 刘辉, 尹航, 贾绍辉, 邱服冰. 适用于残疾儿童青少年运动功能和运动能力测量工具的结构、内容和心理测量特性的系统综述[J]. 《中国康复理论与实践》, 2023, 29(6): 630-638. |
[8] | 王一吉, 周红俊, 何泽佳, 刘根林, 郑樱, 郝春霞, 卫波, 康海琼, 张缨, 逯晓蕾, 袁媛, 蒙倩茹. 不完全性脊髓损伤患者运动功能对称性与步态对称性的关系[J]. 《中国康复理论与实践》, 2023, 29(6): 639-645. |
[9] | 许苗苗, 李楠, 应颖, 杨凯翔, 杨婧瑞, 李杰, 邱彦群. 重复外周磁刺激对左右颈7神经交叉移位术后脑卒中患者上肢运动功能的效果[J]. 《中国康复理论与实践》, 2023, 29(6): 686-690. |
[10] | 郑莉, 鲍治诚, 张琪, 任绪艳, 苏敏. 经皮耳迷走神经电刺激结合康复机器人训练对脑卒中患者上肢功能的效果[J]. 《中国康复理论与实践》, 2023, 29(6): 691-696. |
[11] | 张倩, 孙新亭. 视频镜像训练对脑卒中恢复期患者下肢功能的效果[J]. 《中国康复理论与实践》, 2023, 29(6): 703-707. |
[12] | 林煜凡, 韦添元, 张晓颖, 李晁金子, 何静杰, 杜晓霞. 音乐治疗对脑卒中后认知障碍的效果[J]. 《中国康复理论与实践》, 2023, 29(6): 714-719. |
[13] | 李丹, 王剑雄, 黄茂茂, 胥方元, 曾秋, 李佶钖, 李洋, 夏翠宏, 郑雅丹, 胥章彧, 方雯凤, 万腾刚. 健康中老年女性上下楼梯时下肢肌肉的表面肌电图表现[J]. 《中国康复理论与实践》, 2023, 29(6): 731-737. |
[14] | 金振华, 陈玲, 刘勇. 基于自我效能理论的数字化步行功能训练对脑卒中患者下肢功能的效果[J]. 《中国康复理论与实践》, 2023, 29(5): 504-509. |
[15] | 贾凡, 赵莹, 王钊, 陈杰, 鲁思涵, 张明. 分级运动表象联合重复经颅磁刺激对脑卒中患者上肢功能的效果[J]. 《中国康复理论与实践》, 2023, 29(5): 516-520. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|