《中国康复理论与实践》 ›› 2023, Vol. 29 ›› Issue (6): 731-737.doi: 10.3969/j.issn.1006-9771.2023.06.016
李丹1, 王剑雄1,2, 黄茂茂1, 胥方元1, 曾秋1, 李佶钖1, 李洋1, 夏翠宏1, 郑雅丹1, 胥章彧1, 方雯凤1, 万腾刚1()
收稿日期:
2023-03-01
修回日期:
2023-04-28
出版日期:
2023-06-25
发布日期:
2023-07-14
通讯作者:
万腾刚(1988-),男,汉族,四川雅安市人,技师,主要从事疼痛康复、骨科疾病康复。E-mail: 作者简介:
李丹(1993-),女,汉族,四川简阳市人,硕士,医师,主要研究方向:骨科、脊髓损伤康复和疼痛康复的研究。
基金资助:
LI Dan1, WANG Jianxiong1,2, HUANG Maomao1, XU Fangyuan1, ZENG Qiu1, LI Jiyang1, LI Yang1, XIA Cuihong1, ZHENG Yadan1, XU Zhangyu1, FANG Wenfeng1, WAN Tenggang1()
Received:
2023-03-01
Revised:
2023-04-28
Published:
2023-06-25
Online:
2023-07-14
Contact:
E-mail: Supported by:
摘要:
目的 采用表面肌电图观察健康中老年女性上下楼梯时下肢肌肉的激活策略。
方法 2021年8月至2022年2月,于西南医科大学附属医院招募健康中老年女性20例,采用表面肌电图仪测量上楼梯、下楼梯时,双侧股外侧肌、股直肌、股内侧肌、股二头肌、半腱肌的均方根值(RMS)和积分肌电值,计算共同收缩比。
结果 上楼梯时,双侧股外侧肌、股直肌、股内侧肌启动阶段RMS均显著高于跟随阶段(|t| > 6.650, P < 0.001),右侧股二头肌和双侧半腱肌RMS均明显低于跟随阶段(t > 3.559, P < 0.01);启动阶段腘绳肌/股四头肌共同收缩比显著低于跟随阶段(t > 8.185, P < 0.001)。下楼梯时,双侧股外侧肌、股内侧肌、股二头肌、半腱肌跟随阶段RMS高于启动阶段(t > 2.345, P < 0.05),腘绳肌/股四头肌共同收缩比跟随阶段高于启动阶段(t > 2.405, P < 0.05)。
结论 健康中老年女性上下楼梯时双侧膝周肌肉的活动大致对称。不同活动阶段,股四头肌和腘绳肌的激活和共同收缩存在差异。
中图分类号:
李丹, 王剑雄, 黄茂茂, 胥方元, 曾秋, 李佶钖, 李洋, 夏翠宏, 郑雅丹, 胥章彧, 方雯凤, 万腾刚. 健康中老年女性上下楼梯时下肢肌肉的表面肌电图表现[J]. 《中国康复理论与实践》, 2023, 29(6): 731-737.
LI Dan, WANG Jianxiong, HUANG Maomao, XU Fangyuan, ZENG Qiu, LI Jiyang, LI Yang, XIA Cuihong, ZHENG Yadan, XU Zhangyu, FANG Wenfeng, WAN Tenggang. Surface electromyography of lower limb muscles in healthy middle-aged and old women during stair ascent and descent[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(6): 731-737.
表1
上楼梯时双侧下肢肌肉RMS比较 单位:μV"
肌肉 | 启动阶段 | 跟随阶段 | t值a | P值a | t值b | P值b | t值c | P值c | t值d | P值d | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
左侧 | 右侧 | 左侧 | 右侧 | ||||||||||
股外侧肌 | 32.29±6.24 | 35.51±8.74 | 21.20±6.00 | 20.68±6.37 | 1.570 | 0.133 | 0.316 | 0.756 | -9.451 | < 0.001 | -10.780 | < 0.001 | |
股直肌 | 27.53±5.92 | 25.68±6.34 | 16.61±5.18 | 16.73±5.62 | -1.468 | 0.158 | -0.099 | 0.922 | -12.526 | < 0.001 | -8.350 | < 0.001 | |
股内侧肌 | 32.56±9.72 | 28.71±5.86 | 18.53±8.51 | 17.13±6.74 | -1.986 | 0.062 | 0.718 | 0.481 | -10.090 | < 0.001 | -6.550 | < 0.001 | |
股二头肌 | 26.46±9.22 | 21.90±5.70 | 30.50±10.22 | 33.58±12.52 | -2.495 | 0.022 | -1.012 | 0.324 | 1.805 | 0.087 | 4.540 | < 0.001 | |
半腱肌 | 26.63±8.23 | 25.12±7.58 | 34.76±12.66 | 33.56±10.98 | -0.816 | 0.425 | 0.410 | 0.686 | 3.559 | 0.002 | 5.080 | < 0.001 |
表2
上楼梯时双侧下肢肌肉收缩比比较"
肌肉 | 启动阶段 | 跟随阶段 | t值a | P值a | t值b | P值b | t值c | P值c | t值d | P值d | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
左侧 | 右侧 | 左侧 | 右侧 | ||||||||||
股外侧肌/Q | 0.35±0.05 | 0.39±0.05 | 0.39±0.08 | 0.38±0.07 | 3.084 | 0.006 | 0.120 | 0.906 | 2.805 | 0.011 | -0.906 | 0.376 | |
股直肌/Q | 0.30±0.04 | 0.28±0.04 | 0.29±0.04 | 0.30±0.06 | -1.153 | 0.263 | -0.824 | 0.420 | -0.896 | 0.381 | 1.570 | 0.133 | |
股内侧肌/Q | 0.35±0.07 | 0.32±0.05 | 0.32±0.09 | 0.31±0.09 | -1.939 | 0.067 | 0.366 | 0.719 | -2.200 | 0.040 | -0.570 | 0.575 | |
股二头肌/H | 0.50±0.07 | 0.47±0.09 | 0.47±0.09 | 0.49±0.10 | -1.332 | 0.199 | -0.898 | 0.381 | -1.461 | 0.160 | 1.752 | 0.096 | |
半腱肌/H | 0.50±0.07 | 0.53±0.09 | 0.53±0.09 | 0.51±0.10 | 1.332 | 0.199 | 0.898 | 0.381 | 1.461 | 0.160 | -1.752 | 0.096 | |
H/Q | 0.58±0.16 | 0.54±0.13 | 1.21±0.38 | 1.26±0.46 | -1.214 | 0.240 | -0.482 | 0.635 | 8.185 | < 0.001 | 8.437 | < 0.001 | |
M/L | 1.03±0.23 | 0.98±0.27 | 1.05±0.28 | 1.01±0.33 | -0.835 | 0.414 | 0.458 | 0.652 | 0.376 | 0.711 | 0.851 | 0.406 |
表3
下楼梯时双侧下肢肌肉RMS比较 单位:μV"
肌肉 | 启动阶段 | 跟随阶段 | t值a | P值a | t值b | P值b | t值c | P值c | t值d | P值d | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
左侧 | 右侧 | 左侧 | 右侧 | ||||||||||
股外侧肌 | 20.76±6.31 | 20.97±5.02 | 29.20±7.91 | 27.72±6.91 | 0.178 | 0.861 | 0.710 | 0.486 | 5.832 | < 0.001 | 4.133 | 0.001 | |
股直肌 | 20.91±6.01 | 24.51±10.54 | 22.07±4.52 | 22.69±7.17 | 1.807 | 0.087 | -0.389 | 0.701 | 0.901 | 0.379 | -0.835 | 0.414 | |
股内侧肌 | 23.68±11.74 | 21.17±9.36 | 29.04±8.06 | 27.60±12.07 | -2.103 | 0.049 | 0.502 | 0.621 | 2.345 | 0.030 | 3.898 | 0.001 | |
股二头肌 | 19.05±7.66 | 18.26±6.49 | 27.77±8.23 | 27.16±10.98 | -0.375 | 0.712 | 0.284 | 0.779 | 5.278 | < 0.001 | 4.756 | < 0.001 | |
半腱肌 | 21.10±9.94 | 20.69±7.45 | 33.26±14.00 | 28.92±8.32 | -0.193 | 0.849 | 1.419 | 0.172 | 4.772 | < 0.001 | 6.659 | < 0.001 |
表4
下楼梯时双侧下肢肌肉收缩比比较"
肌肉 | 启动阶段 | 跟随阶段 | t值a | P值a | t值b | P值b | t值c | P值c | t值d | P值d | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
左侧 | 右侧 | 左侧 | 右侧 | ||||||||||
股外侧肌/Q | 0.33±0.06 | 0.33±0.06 | 0.36±0.05 | 0.36±0.06 | 0.008 | 0.994 | 0.105 | 0.917 | 2.891 | 0.009 | 3.864 | 0.001 | |
股直肌/Q | 0.33±0.05 | 0.36±0.07 | 0.28±0.05 | 0.29±0.06 | 1.839 | 0.082 | -0.958 | 0.350 | -4.341 | < 0.001 | -5.075 | < 0.001 | |
股内侧肌/Q | 0.35±0.09 | 0.32±0.08 | 0.36±0.07 | 0.35±0.08 | -1.999 | 0.060 | 0.658 | 0.519 | 0.673 | 0.509 | 2.576 | 0.019 | |
股二头肌/H | 0.48±0.07 | 0.47±0.10 | 0.47±0.06 | 0.48±0.10 | -0.148 | 0.884 | -0.241 | 0.812 | -0.424 | 0.676 | 0.341 | 0.737 | |
半腱肌/H | 0.52±0.07 | 0.53±0.10 | 0.53±0.06 | 0.52±0.10 | 0.148 | 0.884 | 0.241 | 0.812 | 0.424 | 0.676 | -0.341 | 0.737 | |
H/Q | 0.64±0.25 | 0.63±0.26 | 0.75±0.23 | 0.73±0.18 | -0.118 | 0.907 | 0.239 | 0.814 | 2.988 | 0.008 | 2.405 | 0.027 | |
M/L | 1.14±0.25 | 1.09±0.33 | 1.08±0.19 | 1.07±0.33 | -0.758 | 0.458 | 0.026 | 0.980 | -1.356 | 0.191 | -0.395 | 0.698 |
[1] |
SLIEPEN M, MAURICIO E, LIPPERTS M, et al. Objective assessment of physical activity and sedentary behaviour in knee osteoarthritis patients: beyond daily steps and total sedentary time[J]. BMC Musculoskelet Disord, 2018, 19(1): 64.
doi: 10.1186/s12891-018-1980-3 |
[2] |
CLYNES M A, JAMESON K A, EDWARDS M H, et al. Impact of osteoarthritis on activities of daily living: Does joint site matter?[J]. Aging Clin Exp Res, 2019, 31(8): 1049-1056.
doi: 10.1007/s40520-019-01163-0 pmid: 30903599 |
[3] |
TANG X, WANG S, ZHAN S, et al. The prevalence of symptomatic knee osteoarthritis in China: results from the China Health and Retirement Longitudinal Study[J]. Arthritis Rheumatol, 2016, 68(3): 648-653.
doi: 10.1002/art.39465 |
[4] |
PRIETO-ALHAMBRA D, JUDGE A, JAVAID M K, et al. Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: influences of age, gender and osteoarthritis affecting other joints[J]. Ann Rheum Dis, 2014, 73(9): 1659-1664.
doi: 10.1136/annrheumdis-2013-203355 |
[5] |
LUDER G, SCHMID S, STETTLER M, et al. Stair climbing: an insight and comparison between women with and without joint hypermobility: a descriptive study[J]. J Electromyogr Kinesiol, 2015, 25(1): 161-167.
doi: 10.1016/j.jelekin.2014.07.005 |
[6] |
PARK S K, KOBSAR D, FERBER R. Relationship between lower limb muscle strength, self-reported pain and function, and frontal plane gait kinematics in knee osteoarthritis[J]. Clin Biomech, 2016, 38: 68-74.
doi: 10.1016/j.clinbiomech.2016.08.009 |
[7] |
SEGAL N A, GLASS N A. Is quadriceps muscle weakness a risk factor for incident or progressive knee osteoarthritis?[J]. Physician Sportsmed, 2011, 39(4): 44-50.
doi: 10.3810/psm.2011.11.1938 pmid: 22293767 |
[8] | 江迪锦, 廖志平, 李建华. 脑卒中患者坐站起立试验下大腿肌群表面肌电图信号特征研究[J]. 全科医学临床与教育, 2020, 18(8): 690-693. |
JIANG D J, LIAO Z P, LI J H. The surface electromyography characteristics in patients with stroke under standing up test[J]. Clin Educ Gener Prac, 2020, 18(8): 690-693. | |
[9] | TABORRI J, PALERMO E, DEL PRETE Z, et al. On the reliability and repeatability of surface electromyography factorization by muscle synergies in daily life activities[J]. Appl Bionics Biomech, 2018, 2018: 5852307. |
[10] |
HERMENS H J, FRERIKS B, DISSELHORST-KLUG C, et al. Development of recommendations for sEMG sensors and sensor placement procedures[J]. J Electromyogr Kinesiol, 2000, 10(5): 361-374.
doi: 10.1016/S1050-6411(00)00027-4 |
[11] | 王亚薇, 杨阳, 李耀民. 表面肌电图在步态分析中的应用[J]. 中国中西医结合外科杂志, 2021, 27(3): 538-541. |
WANG Y W, YANG Y, LI Y M. Application of surface electromyography in gait analysis[J]. Chin J Surg Integ Tradit West Med, 2021, 27(3): 538-541. | |
[12] |
CHANDRAN V D, CALALO J A, DIXON P C, et al. Knee muscle co-contractions are greater in old compared to young adults during walking and stair use[J]. Gait Posture, 2019, 73: 315-322.
doi: S0966-6362(19)30456-4 pmid: 31419759 |
[13] |
RUTHERFORD D, BAKER M. Lateral to medial hamstring activation ratio: individuals with medial compartment knee osteoarthritis compared to asymptomatic controls during gait[J]. Gait Posture, 2019, 70: 95-97.
doi: S0966-6362(18)31733-8 pmid: 30831546 |
[14] |
ZACHAZEWSKI J E, RILEY P O, KREBS D E. Biomechanical analysis of body mass transfer during stair ascent and descent of healthy subjects[J]. J Rehabil Res Dev, 1993, 30(4): 412-422.
pmid: 8158557 |
[15] |
HARPER N G, WILKEN J M, NEPTUNE R R. Muscle function and coordination of stair ascent[J]. J Biomech Eng, 2018, 140(1). doi: 10.1115/1.4037791.
doi: 10.1115/1.4037791 |
[16] | TEH K C, AZIZ A R. Heart rate, oxygen uptake, and energy cost of ascending and descending the stairs[J]. Med Sci Sports Exerc, 2002, 34(4): 695-699. |
[17] |
COSTIGAN P A, DELUZIO K J, WYSS U P. Knee and hip kinetics during normal stair climbing[J]. Gait Posture, 2002, 16(1): 31-37.
doi: 10.1016/s0966-6362(01)00201-6 pmid: 12127184 |
[18] | 窦树斐. 楼梯行走下肢生物力学特性研究[D]. 天津: 天津科技大学, 2016. |
DOU S F. Biomechanics characteristic research of human lower limb during walking on stairs[D]. Tianjin: Tianjin University of Science and Technology, 2016. | |
[19] |
卢惠苹, 陈瑞华, 张高飞, 等. 半月板损伤患者膝周肌肉的表面肌电图分析[J]. 中国康复理论与实践, 2019, 25(5): 586-589.
doi: 10.3969/j.issn.1006-9771.2019.05.016 |
LU H P, CHEN R H, ZHANG G F, et al. Disorder of muscles around knee with meniscus injury: study with surface electromyography[J]. Chin J Rehabil Theory Pract, 2019, 25(5): 586-589. | |
[20] |
CROCE R V, MILLER J P. The effect of movement velocity and movement pattern on the reciprocal co-activation of the hamstrings[J]. Electromyogr Clin Neurophysiol, 2003, 43(8): 451-458.
pmid: 14717025 |
[21] |
陈一, 施海涛, 毛岭. 脑卒中患者步态周期各时相中下肢肌肉的表面肌电特点[J]. 中国康复理论与实践, 2019, 25(8): 956-961.
doi: 10.3969/j.issn.1006-9771.2019.08.012 |
CHEN Y, SHI H T, MAO L. Surface electromyographic features of lower limb muscles during different phases of gait cycle in stroke patients[J]. Chin J Rehabil Theory Pract, 2019, 25(8): 956-961. | |
[22] |
MEIRELES S, REEVES N D, JONES R K, et al. Patients with medial knee osteoarthritis reduce medial knee contact forces by altering trunk kinematics, progression speed, and stepping strategy during stair ascent and descent: a pilot study[J]. J Appl Biomech, 2019, 35(4): 280-289.
doi: 10.1123/jab.2017-0159 pmid: 31141436 |
[23] |
SINSURIN K, VALLDECABRES R, RICHARDS J. An exploration of the differences in hip strength, gluteus medius activity, and trunk, pelvis, and lower-limb biomechanics during different functional tasks[J]. Int Biomech, 2020, 7(1): 35-43.
doi: 10.1080/23335432.2020.1728381 |
[24] | 张英媛, 王国栋, 陆阿明. 下肢优势侧评定方法的比较研究[J]. 北京体育大学学报, 2014, 37(10): 83-88. |
ZHANG Y Y, WANG G D, LU A M. Comparative study of assessment methods of determining dominant lower limb[J]. J Beijing Sport Univ, 2014, 37(10): 83-88. | |
[25] |
PROTOPAPADAKI A, DRECHSLER W I, CRAMP M C, et al. Hip, knee, ankle kinematics and kinetics during stair ascent and descent in healthy young individuals[J]. Clin Biomech, 2007, 22(2): 203-210.
doi: 10.1016/j.clinbiomech.2006.09.010 pmid: 17126461 |
[26] |
LIN Y C, FOK L A, SCHACHE A G, et al. Muscle coordination of support, progression and balance during stair ambulation[J]. J Biomech, 2015, 48(2): 340-347.
doi: 10.1016/j.jbiomech.2014.11.019 |
[27] |
GERBRANDS T A, PISTERS M F, THEEVEN P J R, et al. Lateral trunk lean and medializing the knee as gait strategies for knee osteoarthritis[J]. Gait Posture, 2017, 51: 247-253.
doi: S0966-6362(16)30642-7 pmid: 27838568 |
[28] |
DUNPHY C, CASEY S, LOMOND A, et al. Contralateral pelvic drop during gait increases knee adduction moments of asymptomatic individuals[J]. Hum Mov Sci, 2016, 49: 27-35.
doi: 10.1016/j.humov.2016.05.008 |
[29] | 张高飞. 表面肌电图在膝关节损伤中的应用现状[J]. 癫痫与神经电生理学杂志, 2017, 26(4): 245-248. |
ZHANG G F. Application status of surface electromyography in knee joint injury[J]. J Epileptol Electroneurophysiol, 2017, 26(4): 245-248. | |
[30] |
WINBY C R, GERUS P, KIRK T B, et al. Correlation between EMG-based co-activation measures and medial and lateral compartment loads of the knee during gait[J]. Clin Biomech, 2013, 28(9-10): 1014-1019.
doi: 10.1016/j.clinbiomech.2013.09.006 |
[31] |
PATSIKA G, KELLIS E, KOFOTOLIS N, et al. Synergetic and antagonist muscle strength and activity in women with knee osteoarthritis[J]. J Geriatr Phys Ther, 2014, 37(1): 17-23.
doi: 10.1519/JPT.0b013e31828fccc1 pmid: 23635991 |
[32] |
MILLS K, HUNT M A, LEIGH R, et al. A systematic review and meta-analysis of lower limb neuromuscular alterations associated with knee osteoarthritis during level walking[J]. Clin Biomech, 2013, 28(7): 713-724.
doi: 10.1016/j.clinbiomech.2013.07.008 |
[33] |
HEIDEN T L, LLOYD D G, ACKLAND T R. Knee joint kinematics, kinetics and muscle co-contraction in knee osteoarthritis patient gait[J]. Clin Biomech, 2009, 24(10): 833-841.
doi: 10.1016/j.clinbiomech.2009.08.005 |
[34] |
SCHMITT L C, RUDOLPH K S. Influences on knee movement strategies during walking in persons with medial knee osteoarthritis[J]. Arthritis Rheum, 2007, 57(6): 1018-1026.
doi: 10.1002/(ISSN)1529-0131 |
[35] |
KELLIS E, SAHINIS C, BALTZOPOULOS V. Is hamstrings-to-quadriceps torque ratio useful for predicting anterior cruciate ligament and hamstring injuries? A systematic and critical review[J]. J Sport Health Sci, 2023, 12(3): 343-358.
doi: 10.1016/j.jshs.2022.01.002 |
[36] |
JEONG J, CHOI D H, SHIN C S. Core strength training can alter neuromuscular and biomechanical risk factors for anterior cruciate ligament injury[J]. Am J Sports Med, 2021, 49(1): 183-192.
doi: 10.1177/0363546520972990 pmid: 33381989 |
[37] |
KREUZ P C, PETERSON L, VAN DER WERF-GROHMANN N, et al. Clinical and electromyographic results of proximal and distal realignment procedures in young patients with recurrent patellar dislocations[J]. Am J Sport Med, 2013, 41(7): 1621-1628.
doi: 10.1177/0363546513488869 |
[38] | 黎发根, 瓮长水, 王娜, 等. 膝关节内侧移位者髋部肌肉力量及表面肌电特征研究[J]. 中国康复医学杂志, 2016, 31(9): 969-972. |
LI F G, WENG C S, WANG N, et al. A study of strength and sEMG of hip muscles in people with medial knee displacement[J]. Chin J Rehabil Med, 2016, 31(9): 969-972. | |
[39] | 吕汐妍, 任超展, 寄婧, 等. 等速离心训练联合股内侧肌电刺激治疗膝关节骨性关节炎临床疗效研究[J]. 中国康复医学杂志, 2021, 36(11): 1433-1435. |
[40] | 杨晨, 田向东, 管垒, 等. BZY-A型低频治疗仪选择性刺激股内侧肌治疗髌骨软化症[J]. 中国矫形外科杂志, 2018, 26(7): 615-618. |
YANG C, TIAN X D, GUAN L, et al. BZY-A low-frequency electrostimulator for selective stimulation of vastus medialis in treatment of patellar chondromalacia[J]. Orthop J Chin, 2018, 26(7): 615-618. | |
[41] |
SMITH S L, WOODBURN J, STEULTJENS M P M. Sex- and osteoarthritis-related differences in muscle co-activation during weight-bearing tasks[J]. Gait Posture, 2020, 79: 117-125.
doi: S0966-6362(20)30139-9 pmid: 32402893 |
[42] |
HORTOBÁGYI T, WESTERKAMP L, BEAM S, et al. Altered hamstring-quadriceps muscle balance in patients with knee osteoarthritis[J]. Clin Biomech, 2005, 20(1): 97-104.
pmid: 15567543 |
[43] | 陈博, 林紫玲, 刘本科, 等. 膝骨性关节炎患者登梯时下肢肌肉活动和膝关节负荷的分析[J]. 现代生物医学进展, 2020, 20(9): 1689-1694, 1792. |
CHEN B, LIN Z L, LIU B K, et al. Analysis of lower limb muscle activity and knee joint loading for stair climbing in knee osteoarthritis patients[J]. Prog Modern Biomed, 2020, 20(9): 1689-1694, 1792. |
[1] | 崔尧, 丛芳, 黄富表, 曾明, 颜如秀. 不同镜像神经元训练策略下脑与肌肉的活动特征:基于近红外光谱与表面肌电图技术[J]. 《中国康复理论与实践》, 2023, 29(7): 782-790. |
[2] | 李俊毅, 陈泽华, 吴祖贵, 王毅, 李聪聪, 王帅, 陈伟健, 叶子璇, 沈星星, 向瑞安, 刘文刚, 许学猛. 超声回声强度评价膝骨关节炎患者股四头肌质量的信度[J]. 《中国康复理论与实践》, 2023, 29(6): 738-744. |
[3] | 朱旭,刘静,董泽萍,仇大伟. 基于表面肌电图手势动作意图识别的系统综述[J]. 《中国康复理论与实践》, 2022, 28(9): 1032-1038. |
[4] | 田亚星,洪永锋,阚秀丽,沈显山,毛晶,江炎,何紫艳,吴俣,胡伟,孙晓宁,胡顺银. 徒手感觉刺激对脑卒中偏瘫患者手指痉挛效果的表面肌电图观察[J]. 《中国康复理论与实践》, 2022, 28(5): 515-519. |
[5] | 钟嘉漫,黄竞杰,刘付懿斐,赵世婷,许雯霞,杨俊兴. 髌骨软化症患者膝关节等速肌力测试[J]. 《中国康复理论与实践》, 2022, 28(4): 379-383. |
[6] | 周越,刘旭,孙悦梅,胡春英,朱悦彤,李渤. 不同运动模式下Flexi-bar训练对躯干稳定性肌肉的影响[J]. 《中国康复理论与实践》, 2022, 28(4): 384-388. |
[7] | 张静,郭峰. 指屈肌主动不足条件下屈指运动时神经肌肉的调控[J]. 《中国康复理论与实践》, 2021, 27(9): 1104-1109. |
[8] | 安丙辰,郑洁皎,周甜甜,汤雨婷,连洁. 髋关节肌训练治疗膝骨关节炎的短期效果[J]. 《中国康复理论与实践》, 2021, 27(2): 203-207. |
[9] | 杨晓颜,周璇,毛琳,陈荣霞,靳梦蝶,夏义玲,王姗姗,汪德轩,杜青. 中西医结合治疗婴儿先天性肌性斜颈的效果[J]. 《中国康复理论与实践》, 2020, 26(8): 897-902. |
[10] | 黄武杰,李雅萍,刘红,江征. 慢性腰痛的表面肌电研究进展[J]. 《中国康复理论与实践》, 2020, 26(7): 802-806. |
[11] | 周哲,沈夏锋,沈小花,吴雪娇,王凤爽,荣积峰,吴毅. 椅面前倾对脑卒中偏瘫患者坐-站转移的影响[J]. 《中国康复理论与实践》, 2020, 26(7): 825-829. |
[12] | 王慧灵,冯晓东,李瑞青,兰晓燕,赵薇,张铭. 表面肌电图在环咽肌失弛缓患者吞咽障碍评定中的应用[J]. 《中国康复理论与实践》, 2020, 26(11): 1275-1279. |
[13] | 刘红, 侯美金, 黄武杰, 林荣, 江征. 慢性非特异性腰痛三维步态分析的研究现状[J]. 《中国康复理论与实践》, 2019, 25(8): 882-885. |
[14] | 卞荣, 陆晓, 熊浩, 曹文月, 朱海燕, 蔡雨生. 两种主动直腿抬高动作相关肌群募集模式的分析[J]. 《中国康复理论与实践》, 2019, 25(7): 840-844. |
[15] | 卢惠苹, 陈瑞华, 张高飞, 陈昕. 半月板损伤患者膝周肌肉的表面肌电图分析[J]. 《中国康复理论与实践》, 2019, 25(5): 586-589. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|