[1] |
AL-HABIB A F, ATTABIB N, BALL J, et al. Clinical predictors of recovery after blunt spinal cord trauma: systematic review[J]. Neurotrauma, 2011, 28(8): 1431-1443.
doi: 10.1089/neu.2009.1157
|
[2] |
WILSON J R, CADOTTE D W, FEHLINGS M G. Clinical predictors of neurological outcome, functional status, and survival after traumatic spinal cord injury: a systematic review[J]. Neurosurg Spine, 2012, 17(1 Suppl): 11-26.
|
[3] |
美国脊髓损伤协会, 国际脊髓损伤学会. 脊髓损伤神经学分类国际标准(2011 年修订)[J]. 李建军,王方永译. 中国康复理论与实践, 2011, 17(10): 963-972.
|
[4] |
MIYANJI F, FURLAN J C, AARABI B, et al. Acute cervical traumatic spinal cord injury: MR imaging findings correlated with neurologic outcome: prospective study with 100 consecutive patients[J]. Radiology, 2007, 243(3): 820-827.
doi: 10.1148/radiol.2433060583
|
[5] |
JIN C, ZHAO L, WU J, et al. Traumatic cervical spinal cord injury: relationship of MRI findings to initial neurological impairment[J]. Eur Spine J, 2021, Dec, 30(12): 3666-3675.
|
[6] |
MARTINEAU J, GOULET J, RICHARD-DENIS A. The relevance of MRI for predicting neurological recovery following cervical traumatic spinal cord injury[J]. Spinal Cord, 2019, 57(10): 866-873.
doi: 10.1038/s41393-019-0295-z
pmid: 31123335
|
[7] |
AARABI B, SANSUR C A, IBRAHIMI D M, et al. Intramedullary lesion length on postoperative magnetic resonance imaging is a strong predictor of ASIA Impairment Scale grade conversion following decompressive surgery in cervical spinal cord injury[J]. Neurosurgery, 2017, 80(4): 610-620.
doi: 10.1093/neuros/nyw053
pmid: 28362913
|
[8] |
TALBOTT J F, WHETSTONE W D, READDY W J, et al. The Brain and Spinal Injury Center score: a novel, simple, and reproducible method for assessing the severity of acute cervical spinal cord injury with axial T2-weighted MRI findings[J]. Neurosurg Spine, 2015, 23(4): 495-504.
doi: 10.3171/2015.1.SPINE141033
|
[9] |
ZHAN S, XIE W, XUE F, et al. Superiority of Brain and Spinal Injury Center score for assessing injury severity and predicting prognosis in patients with acute traumatic spinal cord injury[J]. Clin Neuroradiol, 2022, 32(4): 1117-1125.
doi: 10.1007/s00062-022-01154-1
pmid: 35394137
|
[10] |
YENDIKI A, AGGARWAL M, AXER M, et al. Post mortem mapping of connectional anatomy for the validation of diffusion MRI[J]. Neuroimage, 2022, 256: 119146.
doi: 10.1016/j.neuroimage.2022.119146
|
[11] |
PUKOS N, GOODUS M T, SAHINKAYA F R, et al. Myelin status and oligodendrocyte lineage cells over time after spinal cord injury: What do we know and what still needs to be unwrapped?[J]. Glia, 2019, 67 (11): 2178-2202.
doi: 10.1002/glia.23702
pmid: 31444938
|
[12] |
MURPHY S A, FURGER R, KURPAD S N, et al. Filtered diffusion-weighted MRI of the human cervical spinal cord: feasibility and application to traumatic spinal cord injury[J]. AJNR Am J Neuroradiol. 2021, 42(11): 2101-2106.
doi: 10.3174/ajnr.A7295
|
[13] |
IRIMIA A, VAN HORN J D. Mapping the rest of the human connectome: atlasing the spinal cord and peripheral nervous system[J]. Neuroimage, 2021, 225: 117478.
doi: 10.1016/j.neuroimage.2020.117478
|
[14] |
AARABI B, OLEXA J, CHRYSSIKOS T, et al. Extent of spinal cord decompression in motor complete (American Spinal Injury Association Impariment Scale Grades A and B) traumatic spinal cord injury patients: post-operative magnetic resonance imaging analysis of standard operative approaches[J]. J Neurotrauma, 2019, 36(6): 862-876.
doi: 10.1089/neu.2018.5834
|
[15] |
DOHRMANN G J, WAGNER F C, BUCY P C. The microvasculature in transitory traumatic paraplegia. An electron microscopic study in the monkey[J]. J Neurosurg, 1971, 35(3): 263-271.
pmid: 22046636
|
[16] |
FAIRHOLM D J, TURNBULL I M. Microangiographic study of experimental spinal cord injuries[J]. J Neurosurg, 1971, 35(3): 277-286.
pmid: 22046638
|
[17] |
BALENTINE J D. Pathology of experimental spinal cord trauma. I. The necrotic lesion as a function of vascular injury[J]. Lab Invest, 1978, 39(3): 236-253.
pmid: 713489
|
[18] |
IIZUKA H, YAMAMOTO H, IWASAKI Y, et al. Evolution of tissue damage in compressive spinal cord injury in rats[J]. J Neurosurg, 1987, 66(4): 595-603.
pmid: 3104553
|
[19] |
KAWATA K, MORIMOTO T, OHASHI T, et al. Experimental study of acute spinal cord injury: a histopathological study[J]. No Shinkei Geka, 1993, 21(1): 45-51.
|
[20] |
WAGNER F C Jr, DOHRMANN G J, BUCY P C. Histopathology of transitory traumatic paraplegia in the monkey[J]. J Neurosurg, 1971, 35(3): 272-276.
pmid: 22046637
|
[21] |
MAHMOOD N S, KADAVIGERE R, AVINASH K R, et al. Magnetic resonance imaging in acute cervical spinal cord injury: a correlative study on spinal cord changes and 1 month motor recovery[J]. Spinal Cord, 2008, 46(12): 791-797.
doi: 10.1038/sc.2008.55
pmid: 18542094
|
[22] |
ANDREOLI C, COLAIACOMO M C, ROJAS BECCAGLIA M, et al. MRI in the acute phase of spinal cord traumatic lesions: relationship between MRI findings and neurological outcome[J]. Radiol Med, 2005, 110(5-6): 636-645.
pmid: 16437049
|
[23] |
MARTINEAU J, GOULET J, RICHARD-DENIS A, et al. The relevance of MRI for predicting neurological recovery following cervical traumatic spinal cord injury[J]. Spinal Cord, 2019, 57(10): 866-873.
doi: 10.1038/s41393-019-0295-z
pmid: 31123335
|
[24] |
GHAFFARI-RAFI A, PETERSON C, LEON-ROJAS J E, et al. The role of magnetic resonance imaging to inform clinical decision-making in acute spinal cord injury: a systematic review and meta-analysis[J]. Clin Med, 2021, 10(21): 4948.
|
[25] |
AARABI B, AKHTAR-DANESH N, SIMARD J M, et al. Efficacy of early (≤ 24 hours), late (25-72 hours), and delayed (>72 hours) surgery with magnetic resonance imaging-confirmed decompression in American Spinal Injury Association Impairment Scale Grades C and D acute traumatic central cord syndrome caused by spinal stenosis[J]. J Neurotrauma, 2021, 38(15): 2073-2083.
doi: 10.1089/neu.2021.0040
|
[26] |
HOGGARTH M A, WANG M C, HEMMERLING K J, et al. Effects of vairiability in manually contoured spinal cord masks on fMRI co-registration and interpretation[J]. Front Neurol, 2022, 13: 907581.
doi: 10.3389/fneur.2022.907581
|
[27] |
HAN X, MA X, LI D, et al. Application of neurite orientation dispersion and density imaging to evaluate and predict the surgical outcome for degenerative cervical myelopathy[J]. Orthopaedic Surg, 2022, 14(7): 1482-1488.
doi: 10.1111/os.v14.7
|
[28] |
IWAMA T, OHBA T, OKITA G, et al. Utility and validity of neurite orientation dispersion and density imaging with diffusion tensor imaging to quantify the severity of cervical spondylotic myelopathy and assess postoperative neurological recovery[J]. Spine J, 2020, 20(3): 417-425.
doi: S1529-9430(19)31065-4
pmid: 31683067
|
[29] |
OKITA G, OHBA T, TAKAMURA T, et al. Application of neurite orientation dispersion and density imaging or diffusion tensor imaging to quantity the severity of cervical spondylotic myelopathy and assess postoperative neurologic recovery[J]. Spine, 2018, 18(2): 268-275.
doi: 10.1097/00007632-199302000-00016
|