《中国康复理论与实践》 ›› 2023, Vol. 29 ›› Issue (2): 223-230.doi: 10.3969/j.issn.1006-9771.2023.02.011
收稿日期:
2022-08-12
修回日期:
2023-01-06
出版日期:
2023-02-25
发布日期:
2023-03-16
通讯作者:
李哲
E-mail:Lizhe.1974@163.com
作者简介:
刘明月(1994-),男,汉族,河南周口市人,硕士研究生,主要研究方向:脑机接口技术。
基金资助:
LIU Mingyue, FAN Yalei, ZHANG Meng, SONG Xueyi, LI Zhe2,3()
Received:
2022-08-12
Revised:
2023-01-06
Published:
2023-02-25
Online:
2023-03-16
Contact:
LI Zhe
E-mail:Lizhe.1974@163.com
Supported by:
摘要:
目的 对近10年脑机接口技术用于脑卒中康复领域的相关研究进行可视化分析,识别并预测研究热点及其演变趋势。方法 检索Web of Science核心合集数据库中2011年1月至2022年10月收录的脑机接口技术用于脑卒中康复领域的相关文献,通过CiteSpace 5.8.R3软件绘制发文量、国家、机构、作者、关键词、共被引以及基金支持的可视化图谱并进行解读。结果与结论 共纳入592篇文献。该领域研究年发文量呈快速增长趋势,研究热度持续增加。美国在此领域处于领先地位,合作发文量最多且中介中心性最高;中国在此领域具有一定的优势,但仍需加强与其他国家/地区间交流合作。国外机构、作者间形成交流密切的合作关系网络,并形成以Niels Birbaumer、Cuntai Guan、Kai Keng Ang等为代表的高影响力团队;国内作者、机构之间合作关系欠佳,存在地域限制,缺乏高影响力的学术团体。关键词以“motor imagery”“recovery”等为代表形成10个主要聚类和15个变化率高的突显词,研究方向呈现出多元化趋势。上肢运动康复的疗效研究和中枢机制探讨一直是该领域的热点,且在未来一段时间内仍将持续;下肢脑机接口系统用于改善脑卒中患者足下垂、步态和平衡功能,以及多模态脑机接口的应用,可能会发展为未来的研究热点;基于脑机接口引导的神经反馈训练用于脑卒中的认知、语言康复同样需要予以关注。
中图分类号:
刘明月, 樊亚蕾, 张蒙, 宋薛艺, 李哲. 近10年脑机接口技术用于脑卒中康复领域的可视化分析[J]. 《中国康复理论与实践》, 2023, 29(2): 223-230.
LIU Mingyue, FAN Yalei, ZHANG Meng, SONG Xueyi, LI Zhe. Brain-computer interface technology for stroke in the past decade: a visualized analysis[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(2): 223-230.
表5
关键词聚类图中包含的主要关键词"
聚类号 | 聚类中包含的主要关键词 |
---|---|
#0 | motor recovery; functional connectivity; neural plasticity; motor impairment; noninvasive brain stimulation; cortex activity; feedback |
#1 | event-related desynchronization; electroencephalogram; selection; pattern; independent component analysis |
#2 | upper extremity; electrical stimulation; plasticity; gait rehabilitation; walking; mu rhythm |
#3 | mental practice; task analysis; reorganization; cortical potential; mechanism; movement intention |
#4 | motor imagery; transcranial magnetic stimulation; spremotor cortex; fMRI; self regulation |
#5 | neurofeedback; motor cortex; hand function; functional near-infrared spectroscopy |
#6 | modulation; functional electrical stimulation; induced movement therapy; neural plasticity; beta oscillation |
#7 | virtual reality; cognition; cortical control; functional recovery |
#8 | chronic stroke; reinforcement learning; motor cortex; moter evoked potentials |
#9 | quality of life; functional restoration; soft robotics |
表6
脑机接口技术用于脑卒中康复领域的高被引文献(前5名)"
排名 | 第一作者 | 年份 | 题目 | 频次 | 中心性 |
---|---|---|---|---|---|
1 | Ramos-Murguialday A | 2013 | Brainmachine interface in chronic stroke rehabilitation: a controlled study | 124 | 0.09 |
2 | Biasiucci A | 2018 | Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke | 93 | 0.01 |
3 | Pichiorri F | 2015 | Brain-computer interface boosts motor imagery practice during stroke recovery | 88 | 0.04 |
4 | Cervera M A | 2018 | Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis | 82 | 0.02 |
5 | Ang K K | 2015 | A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke | 70 | 0.02 |
[1] |
WU S, WU B, LIU M, et al. Stroke in China: advances and challenges in epidemiology, prevention, and management[J]. Lancet Neurol, 2019, 18(4): 394-405.
doi: S1474-4422(18)30500-3 pmid: 30878104 |
[2] |
STINEAR C M, LANG C E, ZEILER S, et al. Advances and challenges in stroke rehabilitation[J]. Lancet Neurol, 2020, 19(4): 348-360.
doi: S1474-4422(19)30415-6 pmid: 32004440 |
[3] |
MCLEAN D E. Medical complications experienced by a cohort of stroke survivors during inpatient, tertiary-level stroke rehabilitation[J]. Arch Phys Med Rehabil, 2004, 85(2): 466-469.
doi: 10.1016/S0003-9993(03)00484-2 |
[4] | 陈树耿, 贾杰. 脑机接口在脑卒中手功能康复中的应用进展[J]. 中国康复理论与实践, 2017, 23(1): 23-26. |
CHEN S G, JIA J. Advances in the application of brain-computer interface in stroke hand function rehabilitation[J]. Chin J Rehabil Theory Pract, 2017, 23(1): 23-26. | |
[5] |
GAO X, WANG Y, CHEN X, et al. Interface, interaction, and intelligence in generalized brain computer interfaces[J]. Trends Cogn Sci, 2021, 25(8): 671-684.
doi: 10.1016/j.tics.2021.04.003 |
[6] |
BIASIUCCI A, LEEB R, ITURRATE I, et al. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke[J]. Nat Commun, 2018, 9(1): 2421.
doi: 10.1038/s41467-018-04673-z pmid: 29925890 |
[7] |
LI X, MA E, QU H. Knowledge mapping of hospitality research: a visual analysis using CiteSpace[J]. Int J Hosp Manag, 2017, 60(7): 77-93.
doi: 10.1016/j.ijhm.2016.10.006 |
[8] |
XU A H, SUN Y X. Research hotspots and effectiveness of repetitive transcranial magnetic stimulation in stroke rehabilitation[J]. Neural Regen Res, 2020, 15(11): 2089-2097.
doi: 10.4103/1673-5374.282269 |
[9] | CHEN C. The structure and dynamics of cocitation clusters:a multiple-perspective cocitation analysis[J]. Wiley Inter Sci, 2009, 7(61): 1386-1409. |
[10] |
CHEN C. Searching for intellectual turning points: progressive knowledge domain visualization[J]. Proc Natl Acad Sci USA, 2004, 101(Suppl 1): 5303-5310.
doi: 10.1073/pnas.0307513100 |
[11] |
LIU Z, YIN Y, LIU W, et al. Visualizing the intellectual structure and evolution of innovation systems research: a bibliometric analysis[J]. Scientometrics, 2015, 103(1): 135-158.
doi: 10.1007/s11192-014-1517-y |
[12] |
POO M M, DU J L, IP N Y, et al. China brain project: basic neuroscience, brain diseases, and brain-inspired computing[J]. Neuron, 2016, 92(3): 591-596.
doi: 10.1016/j.neuron.2016.10.050 |
[13] |
BUCH E, WEBER C, COHEN L G, et al. Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke[J]. Stroke, 2008, 39(3): 910-917.
doi: 10.1161/STROKEAHA.107.505313 pmid: 18258825 |
[14] |
CHAUDHARY U, BIRBAUMER N, RAMOS-MURGUIALDAY A. Brain-computer interfaces for communication and rehabilitation[J]. Nat Rev Neurol, 2016, 12(9): 513-525.
doi: 10.1038/nrneurol.2016.113 pmid: 27539560 |
[15] |
CHAUDHARY U, BIRBAUMER N, CURADO M R. Brain-machine interface (BMI) in paralysis[J]. Ann Phys Rehabil Med, 2015, 58(1): 9-13.
doi: S1877-0657(14)01835-1 pmid: 25623294 |
[16] |
CHAUDHARY U, BIRBAUMER N, RAMOS-MURGUIALDAY A. Brain-computer interfaces in the completely locked-in state and chronic stroke[J]. Prog Brain Res, 2016, 228: 131-161.
doi: 10.1016/bs.pbr.2016.04.019 pmid: 27590968 |
[17] |
CHEN S, CAO L, SHU X, et al. Longitudinal electroencephalography analysis in subacute stroke patients during intervention of brain-computer interface with exoskeleton feedback[J]. Front Neurosci, 2020, 14: 809.
doi: 10.3389/fnins.2020.00809 |
[18] |
LI M, LIU Y, WU Y, et al. Neurophysiological substrates of stroke patients with motor imagery-based brain-computer interface training[J]. Int J Neurosci, 2014, 124(6): 403-415.
doi: 10.3109/00207454.2013.850082 pmid: 24079396 |
[19] |
CERVERA M A, SOEKADAR S R, USHIBA J, et al. Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis[J]. Ann Clin Transl Neurol, 2018, 5(5): 651-663.
doi: 10.1002/acn3.2018.5.issue-5 |
[20] |
JOHNSON N N, CAREY J, EDELMAN B J, et al. Combined rTMS and virtual reality brain-computer interface training for motor recovery after stroke[J]. J Neural Eng, 2018, 15(1): 016009.
doi: 10.1088/1741-2552/aa8ce3 |
[21] |
DING Q, LIN T, WU M, et al. Influence of iTBS on the acute neuroplastic change after BCI training[J]. Front Cell Neurosci, 2021, 15: 653487.
doi: 10.3389/fncel.2021.653487 |
[22] |
SHU X, CHEN S, CHAI G, et al. Neural modulation by repetitive transcranial magnetic stimulation (rTMS) for BCI enhancement in stroke patients[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2018, 2018: 2272-2275.
doi: 10.1109/EMBC.2018.8512860 pmid: 30440859 |
[23] |
ANG K K, GUAN C, PHUA K S, et al. Facilitating effects of transcranial direct current stimulation on motor imagery brain-computer interface with robotic feedback for stroke rehabilitation[J]. Arch Phys Med Rehabil, 2015, 96(3 Suppl): S79-S87.
doi: 10.1016/j.apmr.2014.08.008 |
[24] |
IRIMIA D C, CHO W, ORTNER R, et al. Brain-computer interfaces with multi-sensory feedback for stroke rehabilitation: a case study[J]. Artif Organs, 2017, 41(11): E178-E184.
doi: 10.1111/aor.2017.41.issue-11 |
[25] |
RAMOS-MURGUIALDAY A, BROETZ D, REA M, et al. Brain-machine interface in chronic stroke rehabilitation: a controlled study[J]. Ann Neurol, 2013, 74(1): 100-108.
doi: 10.1002/ana.v74.1 |
[26] |
PICHIORRI F, MORONE G, PETTI M, et al. Brain-computer interface boosts motor imagery practice during stroke recovery[J]. Ann Neurol, 2015, 77(5): 851-865.
doi: 10.1002/ana.24390 pmid: 25712802 |
[27] |
ANG K K, CHUA K S G, PHUA K S, et al. A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke[J]. Clin EEG Neurosci, 2015, 46(4): 310-320.
doi: 10.1177/1550059414522229 pmid: 24756025 |
[28] |
RASHID M, SULAIMAN N, P P ABDUL MAJEED A, et al. Current status, challenges, and possible solutions of EEG-based brain-computer interface: a comprehensive review[J]. Front Neurorobot, 2020, 14: 25.
doi: 10.3389/fnbot.2020.00025 |
[29] |
MCCRIMMON C M, KING C E, WANG P T, et al. Brain-controlled functional electrical stimulation for lower-limb motor recovery in stroke survivors[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2014, 2014: 1247-1250.
doi: 10.1109/EMBC.2014.6943823 pmid: 25570191 |
[30] |
MCCRIMMON C M, KING C E, WANG P T, et al. Brain-controlled functional electrical stimulation therapy for gait rehabilitation after stroke: a safety study[J]. J Neuroeng Rehabil, 2015, 11(12): 57.
doi: 10.1186/1743-0003-11-57 |
[31] |
DO A H, WANG P T, KING C E, et al. Brain-computer interface controlled functional electrical stimulation device for foot drop due to stroke[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2012, 2012: 6414-6417.
doi: 10.1109/EMBC.2012.6347462 pmid: 23367397 |
[32] |
TAKAHASHI M, TAKEDA K, OTAKA Y, et al. Event related desynchronization-modulated functional electrical stimulation system for stroke rehabilitation: a feasibility study[J]. J Neuroeng Rehabil, 2012, 16(9): 56.
doi: 10.1186/s12984-019-0531-y |
[33] |
ROST N S, BRODTMANN A, PASE M P, et al. Post-stroke cognitive impairment and dementia[J]. Circ Res, 2022, 130(8): 1252-1271.
doi: 10.1161/CIRCRESAHA.122.319951 pmid: 35420911 |
[34] |
TOPPI J, MATTIA D, ANZOLIN A, et al. Time varying effective connectivity for describing brain network changes induced by a memory rehabilitation treatment[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2014, 2014: 6786-6789.
doi: 10.1109/EMBC.2014.6945186 pmid: 25571554 |
[35] | KOBER S E, SCHWEIGER D, WITTE M, et al. Specific effects of EEG based neurofeedback training on memory functions in post-stroke victims[J]. J Neuroeng Rehabil, 2015, 1(12): 107. |
[36] | CARELLI L, SOLCA F, FAINI A, et al. Brain-computer interface for clinical purposes: cognitive assessment and rehabilitation[J]. Biomed Res Int, 2017, 2017: 1695290. |
[37] |
MANE R, CHOUHAN T, GUAN C. BCI for stroke rehabilitation: motor and beyond[J]. J Neural Eng, 2020, 17(4): 041001.
doi: 10.1088/1741-2552/aba162 |
[38] | MANE R, WU Z, WANG D. Poststroke motor, cognitive and speech rehabilitation with brain-computer interface: a perspective review[J]. Stroke Vasc Neurol, 2022, 2022: 001506. |
[1] | 罗丽华, 王雨生, 李剑锋, 董继革. 术后早期综合康复对儿童青少年肱骨髁上骨折伴尺神经损伤的效果[J]. 《中国康复理论与实践》, 2024, 30(1): 105-110. |
[2] | 王子豪, 李昕华, 蒋慧萍, 郭赛男, 梁秋曼, 史婷奇. 全膝关节置换术后短期膝关节功能及其影响因素[J]. 《中国康复理论与实践》, 2024, 30(1): 111-118. |
[3] | 林娜, 高菡璐, 卢惠苹, 陈燕清, 郑军凡, 陈述荣. 虚拟现实技术对脑卒中上肢功能影响的弥散张量成像研究[J]. 《中国康复理论与实践》, 2024, 30(1): 61-67. |
[4] | 王昊懿, 史亚伟, 鲁俊, 许光旭. 主观垂直感知障碍对脑卒中患者功能影响的回顾性研究[J]. 《中国康复理论与实践》, 2024, 30(1): 68-73. |
[5] | 陈珺雯, 陈谦, 陈程, 李淑月, 刘玲玲, 吴存书, 龚翔, 鲁俊, 许光旭. 改良八段锦身体活动对脑卒中患者心肺功能、运动功能和日常生活活动能力的效果[J]. 《中国康复理论与实践》, 2024, 30(1): 74-80. |
[6] | 胡永林, 马颖, 窦超, 陆安民, 江小鸽, 宋新建, 肖玉华. 肩部控制训练联合神经松动术对脑卒中偏瘫患者肩痛及上肢功能的效果[J]. 《中国康复理论与实践》, 2024, 30(1): 81-86. |
[7] | 王贺, 韩靓, 阚梦凡, 于少泓. 电刺激治疗脑卒中后肩手综合征有效性的系统评价与Meta分析[J]. 《中国康复理论与实践》, 2023, 29(9): 1048-1056. |
[8] | 史佳伟, 李凌宇, 杨浩杰, 王琴潞, 邹海欧. 预康复对全膝关节置换术后患者的有效性:系统综述的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1057-1064. |
[9] | 邹瑜聪, 周静, 林炜明, 李冬霞, 王娟, 王昱棋, 王玉龙. 近5年慢性意识障碍治疗的可视化分析[J]. 《中国康复理论与实践》, 2023, 29(9): 1065-1071. |
[10] | 蔡华年, 费思先, 张忆晨, 孙青, 郭帅, 宋韬. 基于导纳控制的双边康复机器人运动辅助分析[J]. 《中国康复理论与实践》, 2023, 29(9): 1104-1109. |
[11] | 孙藤方, 任梦婷, 杨琳, 王耀霆, 王红雨, 闫兴洲. 高压氧治疗联合重复外周磁刺激干预脑卒中患者踝运动功能和平衡能力的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 875-881. |
[12] | 王亚楠, 刘西花. 脑卒中偏瘫患者主观和客观平衡功能测量的相关性及预测效能[J]. 《中国康复理论与实践》, 2023, 29(8): 890-895. |
[13] | 王海云, 王寅, 周信杰, 何爱群. 基于“中枢-外周-中枢”理论的经颅直流电刺激结合针刺干预脑卒中患者中枢及上肢功能的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 919-925. |
[14] | 陈怡婷, 王倩, 崔慎红, 李映彩, 张思鈺, 魏衍旭, 任慧, 冷军, 陈斌. 双侧序贯重复经颅磁刺激干预脑卒中患者上肢运动功能的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 926-932. |
[15] | 李振亚, 孙洁, 郭鹏飞, 王光明. 脑卒中患者口期和咽期吞咽功能改变与误吸的相关性:基于电视透视吞咽检查[J]. 《中国康复理论与实践》, 2023, 29(8): 933-939. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|