《中国康复理论与实践》 ›› 2023, Vol. 29 ›› Issue (2): 193-204.doi: 10.3969/j.issn.1006-9771.2023.02.008
程斯曼1, 辛榕1, 赵燕2, 刘庆余1, 谢加乐1, 刘鹏2(), 王朴1()
收稿日期:
2022-10-11
修回日期:
2023-01-06
出版日期:
2023-02-25
发布日期:
2023-03-16
通讯作者:
刘鹏,王朴
E-mail:liupeng2@mail.sysu.edu.cn;wangpu@sysush.com
作者简介:
程斯曼(1993-),女,汉族,广东潮州市人,硕士研究生,主要研究方向:神经康复。
CHENG Siman1, XIN Rong1, ZHAO Yan2, LIU Qingyu1, XIE Jiale1, LIU Peng2(), WANG Pu1()
Received:
2022-10-11
Revised:
2023-01-06
Published:
2023-02-25
Online:
2023-03-16
Contact:
LIU Peng, WANG Pu
E-mail:liupeng2@mail.sysu.edu.cn;wangpu@sysush.com
摘要:
目的 对重复经颅磁刺激(rTMS)改善脑卒中功能障碍的功能磁共振成像(fMRI)研究进行Scoping综述,了解rTMS作用的脑机制。方法 检索建库至2022年6月1日PubMed、Web of Science、中国知网、万方数据库中有关rTMS改善脑卒中功能障碍的fMRI研究。采用物理治疗证据数据库(PEDro)量表对纳入文献进行质量评价。由2名研究人员筛选文献、整理资料并进行Scoping综述。结果 最终纳入14篇文献,均为高质量或极高质量。纳入文献研究设计为临床随机对照试验。研究主要涉及rTMS对脑卒中后各种功能障碍,如偏瘫、失语、吞咽困难、认知损害、抑郁方面的治疗效果和fMRI变化。结论 rTMS可以改变脑卒中后大脑皮质的兴奋性和大脑区域之间有效连接,促进大脑功能重组,实现脑卒中后功能障碍的恢复。
中图分类号:
程斯曼, 辛榕, 赵燕, 刘庆余, 谢加乐, 刘鹏, 王朴. 重复经颅磁刺激改善脑卒中功能障碍的功能磁共振成像研究:Scoping综述[J]. 《中国康复理论与实践》, 2023, 29(2): 193-204.
CHENG Siman, XIN Rong, ZHAO Yan, LIU Qingyu, XIE Jiale, LIU Peng, WANG Pu. Functional magnetic resonance imaging study about repetitive transcranial magnetic stimulation for dysfunction after stroke: a scoping review[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(2): 193-204.
表1
纳入文献基本特征"
纳入文献 | 国家 | 受试者 | n | 干预措施 | 结局指标 | fMRI显示结果 | 其他结局 |
---|---|---|---|---|---|---|---|
Tosun等[ | 土耳其 | 偏瘫患者 | 9/7/9 | 假刺激+常规康复治疗/rTMS+NMES+常规康复治疗/常规康复治疗 | FMA、BI、fMRI | rTMS干预后,在患手活动过程中患侧M1区激活增加明显,健侧M1区未见变化 | rTMS组FMA评分显著高于假刺激组,运动功能明显改善 |
Gottlieb等[ | 德国 | 偏瘫患者 | 14/14 | 假刺激+常规康复治疗/rTMS+常规康复治疗 | FMA、fMRI | rTMS干预后左角回连接性增加 | rTMS组FMA评分显著高于假刺激组,运动功能明显改善 |
Guo等[ | 中国 | 偏瘫患者 | 20/20/20 | 假刺激+常规康复治疗/1 Hz rTMS+常规康复治疗/10 Hz rTMS+常规康复治疗 | FMA、BI、fMRI | 低、高频rTMS组同侧M1和SMA与对侧PMA之间,对侧M1和对侧SMA之间,对侧SMA和同侧SMA之间的FC显著变化 | rTMS组FMA评分、BI分数显著高于假刺激组,运动功能明显改善 |
Lee等[ | 中国 | 卒中后失语患者 | 13/13 | 假刺激+常规康复治疗/rTMS+常规康复治疗 | CCAT、fMRI | rTMS组右颞上回、右前额叶背外侧回、岛叶皮质和尾状核的fALFF显著增加,右侧丘脑fALFF减少 | rTMS组CCAT分数增高明显,言语功能改善明显 |
Bai等[ | 中国 | 卒中后失语患者 | 30/30 | 假刺激+言语训练/rTMS+言语训练 | WAB、简式Token试验、fMRI | rTMS组右半球额叶多个脑区、右颞叶和右顶叶等脑区的fALFF值下降,左顶叶、左角回、左额叶、双侧边缘叶激活增加 | rTMS干预后WAB、简式Token分数显著提高,语言能力改善 |
Szaflarski等[ | 美国 | 卒中后失语患者 | 9/9/9/9 | 3周假刺激/2周假刺激+1周真刺激/1周假刺激+2周真刺激/3周真刺激 | WAB、BNT、SFT、COWAT、fMRI | rTMS组两侧半球都显示出更大的fMRI激活,左右侧IFG之间和双侧大脑半球脑区的连接性发生改变 | rTMS干预后WAB、BNT分数改善明显,语言功能改善 |
Allendorfer等[ | 美国 | 卒中后失语患者 | 9/9/9/9 | 3周假刺激/2周假刺激+1周真刺激/1周假刺激+2周真刺激/3周真刺激 | BNT、fMRI | rTMS组左侧视觉皮质包括左腹侧视觉流激活增加,双侧SMA激活减少,右前额叶和前岛叶区激活减少 | rTMS干预后WAB、BNT分数改善明显,语言能力改善 |
陈栩铤等[ | 中国 | 卒中后吞咽困难患者 | 10/10 | 假刺激+常规康复治疗/rTMS+常规康复治疗 | 用进食评估问卷调查工具-10、吞咽功能性交流测试、改良曼恩吞咽能力评估量表、fMRI | rTMS组大脑顶叶、顶上小叶、BA7、BA40激活范围较组内治疗前和对照组治疗后均明显增大 | 治疗后,两组用进食评估问卷调查工具-10、吞咽功能性交流测试及改良曼恩吞咽能力评估评分均优于治疗前;rTMS组评分均优于假刺激组 |
焦勇钢等[ | 中国 | 卒中后吞咽困难患者 | 20/20 | 假刺激+常规康复治疗/rTMS+常规康复治疗 | 临床吞咽困难量表、吞咽困难预后和严重程度量表、fMRI | 高频rTMS组ALFF增强的脑区包括双侧尾状核、双侧豆状核和双侧额上回 | rTMS 组吞咽功能改善更明显 |
Yin等[ | 中国 | 卒中后认知损害患者 | 18/16 | 假刺激/rTMS | MoCA、RBMT、fMRI | rTMS组左内侧前额叶皮质ALFF增加以及右内侧前额叶皮质和右腹侧前扣带回FC增加 | rTMS组认知功能改善更明显 |
罗红等[ | 中国 | 卒中后认知损害患者 | 15/15 | 认知康复训练/rTMS+认知康复训练 | MoCA、MMSE、fMRI | rTMS组楔前叶、颞下回、额中回、IFG等FC增加,fALFF增高脑区主要有颞上回、IFG、海马旁回等,RoHo增高脑区主要有缘上回、楔前叶、扣带回等 | rTMS组认知功能改善情况明显优于对照组 |
Li等[ | 中国 | 卒中后认知损害患者 | 15/15 | 假刺激+认知训练/rTMS+认知康复训练 | MMSE、MoCA、fMRI | rTMS组颞上回、IFG和海马旁回fALFF值较高,颞中回、额中回和梭状回fALFF值较低。LDPFC与楔前叶、颞下回、额中下回和边缘回之间FC增加,与颞中回和丘脑之间的FC减少 | 两组认知均有改善,rTMS组较假刺激组改善明显 |
Li等[ | 中国 | 卒中后抑郁患者 | 16/16 | 假刺激+常规康复治疗/rTMS+常规康复治疗 | 汉密尔顿抑郁量表、fMRI | rTMS组ReHo 和 fALFF值较低的区域主要位于左半球。DMN内动态FC也产生显著变化 | rTMS组汉密尔顿抑郁量表评分显著减少,抑郁症状改善明显 |
Eshel等[ | 美国 | 抑郁患者 | 13/20 | 假刺激+常规康复治疗/rTMS+常规康复治疗 | 汉密尔顿抑郁量表、EEG、fMRI | rTMS组DLPFC全脑连接性增加,并且诱导负性DLPFC-杏仁核连接性 | rTMS干预后抑郁症状显著改善 |
表2
纳入文献rTMS处方"
纳入文献 | 频率 | 强度 | 序列 | 总脉冲 | 刺激部位 | 持续时间 | 假rTMS设置 |
---|---|---|---|---|---|---|---|
Tosun等[ | 1 Hz | 90% rMT | 未描述 | 每天1 200脉冲 | 健侧M1 | 每天1次,每周5 d,2周 | 旋转刺激线圈90°垂直于头皮 |
Gottlieb等[ | 1 Hz | 100% rMT | 未描述 | 每天1 200脉冲 | 健侧M1 | 每天1次,每周5 d,2周 | 旋转刺激线圈90°垂直于头皮 |
Guo等[ | 1 Hz/10 Hz | 90% rMT | 30 | 每天900脉冲/1 500脉冲 | 健侧M1/患侧M1 | 每天1次,每周5 d,1周 | 假线圈 |
Lee等[ | 1 Hz | 90% rMT | 未描述 | 未描述 | 患侧三角部 | 每天1次,每周5 d,2周 | 假线圈 |
Bai等[ | 1 Hz | 80% rMT | 100 | 每天1 000脉冲 | 右侧IFG | 每天1次,每周5 d,4周 | 旋转刺激线圈90°垂直于头皮 |
Szaflarski等[ | 50 Hz | 80% AMT | 未描述 | 每天600脉冲 | 左侧IFG | 每天1次,每周5 d,3周 | 未描述 |
Allendorfer等[ | 50 Hz | 80% AMT | 未描述 | 每天600脉冲 | 左侧IFG | 每天1次,每周5 d,3周 | 未描述 |
陈栩铤等[ | 5 Hz | 80% rMT | 未描述 | 每天1 000脉冲 | 健侧大脑半球舌骨上肌群皮质对应区 | 每天1次,每周6 d,2周 | 旋转刺激线圈90°垂直于头皮 |
焦勇钢等[ | 3 Hz | 80% rMT | 未描述 | 未描述 | 双侧咽部运动皮质 | 每天1次,每周5 d,2周 | 未描述 |
Yin等[ | 10 Hz | 80% rMT | 40 | 每天2 000脉冲 | 左侧DLPFC | 每天1次,每周5 d,4周 | 旋转刺激线圈90°垂直于头皮 |
罗红等[ | 5 Hz | 80%~120% MT | 未描述 | 每天1 050脉冲 | 左侧DLPFC | 每天1次,每周5 d,3周 | 未描述 |
Li等[ | 5 Hz | 100% MT | 50 | 每天2 000脉冲 | 左侧DLPFC | 每天1次,每周5 d,4周 | 旋转刺激线圈90°垂直于头皮 |
Li等[ | 5 Hz | 90% rMT | 50 | 每天2 000脉冲 | 左侧DLPFC | 每天1次,每周6 d,4周 | 旋转刺激线圈90°垂直于头皮 |
Eshel等[ | 10 Hz | 未描述 | 未描述 | 每天2 000脉冲 | 左侧DLPFC | 每天1次,每周5 d,4周 | 旋转刺激线圈90°垂直于头皮 |
表3
纳入文献的质量评价结果"
纳入文献 | 条目1 | 条目2 | 条目3 | 条目4 | 条目5 | 条目6 | 条目7 | 条目8 | 条目9 | 条目10 | 条目11 | 总分 | 文献质量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tosun等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 9 | 极高 | |
Gottlieb等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 9 | 极高 | |
Guo等[ | √ | √ | √ | √ | √ | √ | √ | 6 | 高 | ||||
Lee等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 9 | 极高 | |
Bai等[ | √ | √ | √ | √ | √ | √ | √ | 6 | 高 | ||||
Szaflarski等[ | √ | √ | √ | √ | √ | √ | √ | √ | 7 | 高 | |||
Allendorfer等[ | √ | √ | √ | √ | √ | √ | √ | √ | 7 | 高 | |||
陈栩铤等[ | √ | √ | √ | √ | √ | √ | √ | 6 | 高 | ||||
焦勇钢等[ | √ | √ | √ | √ | √ | √ | √ | 6 | 高 | ||||
Yin等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 8 | 高 | ||
罗红等[ | √ | √ | √ | √ | √ | √ | √ | √ | 7 | 高 | |||
Li等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 9 | 极高 | |
Li等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 9 | 极高 | |
Eshel等[ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 8 | 高 |
[1] |
BERGMANN T O, KARABANOV A, HARTWIGSEN G, et al. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives[J]. Neuroimage, 2016, 140: 4-19.
doi: 10.1016/j.neuroimage.2016.02.012 pmid: 26883069 |
[2] |
NING L, MAKRIS N, CAMPRODON J A, et al. Limits and reproducibility of resting-state functional MRI definition of DLPFC targets for neuromodulation[J]. Brain Stimul, 2019, 12(1): 129-138.
doi: S1935-861X(18)30350-4 pmid: 30344110 |
[3] |
MARINI M, BANAJI M R, PASCUAL-LEONE A. Studying implicit social cognition with noninvasive brain stimulation[J]. Trends Cogn Sci, 2018, 22(11): 1050-1066.
doi: S1364-6613(18)30176-1 pmid: 30181079 |
[4] |
CHUNG S W, HILL A T, ROGASCH N C, et al. Use of theta-burst stimulation in changing excitability of motor cortex: a systematic review and meta-analysis[J]. Neurosci Biobehav Rev, 2016, 63: 43-64.
doi: 10.1016/j.neubiorev.2016.01.008 pmid: 26850210 |
[5] |
LEFAUCHEUR J P, ALEMAN A, BAEKEN C, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014-2018)[J]. Clin Neurophysiol, 2020, 131(2): 474-528.
doi: 10.1016/j.clinph.2019.11.002 |
[6] |
SANKARASUBRAMANIAN V, MACHADO A G, CONFORTO A B, et al. Inhibition versus facilitation of contralesional motor cortices in stroke: deriving a model to tailor brain stimulation[J]. Clin Neurophysiol, 2017, 128(6): 892-902.
doi: S1388-2457(17)30118-9 pmid: 28402865 |
[7] |
CRINION J T, LEFF A P. Recovery and treatment of aphasia after stroke: functional imaging studies[J]. Curr Opin Neurol, 2007, 20(6): 667-673.
pmid: 17992087 |
[8] | 魏莲, 李妮. 不同频率重复经颅磁刺激治疗脑干损伤致昏迷患者的促醒效果及安全性研究[J]. 实用心脑肺血管病杂志, 2020, 28(6): 79-84. |
WEI L, LI N. Wake-promoting effect and safety of different frequencies of repetitive transcranial magnetic stimulation in patients with coma caused by brainstem injury[J]. Pract J Cardiac Cereb Pneumal Vas Dis, 2020, 28(6): 79-84. | |
[9] |
SEBASTIANELLI L, VERSACE V, MARTIGNAGO S, et al. Low-frequency rTMS of the unaffected hemisphere in stroke patients: a systematic review[J]. Acta Neurol Scand, 2017, 136(6): 585-605.
doi: 10.1111/ane.12773 pmid: 28464421 |
[10] |
HEIKKINEN P H, PULVERMULLER F, MAKELA J P, et al. Combining rTMS with intensive language-action therapy in chronic aphasia: a randomized controlled trial[J]. Front Neurosci, 2018, 12: 1036.
doi: 10.3389/fnins.2018.01036 |
[11] |
BESTMANN S, SWAYNE O, BLANKENBURG F, et al. The role of contralesional dorsal premotor cortex after stroke as studied with concurrent TMS-fMRI[J]. J Neurosci, 2010, 30(36): 11926-11937.
doi: 10.1523/JNEUROSCI.5642-09.2010 pmid: 20826657 |
[12] |
BUCHBINDER B R. Functional magnetic resonance imaging[J]. Handb Clin Neurol, 2016, 135: 61-92.
doi: B978-0-444-53485-9.00004-0 pmid: 27432660 |
[13] |
SHAN X, QIU Y, PAN P, et al. Disrupted regional homogeneity in drug-naive patients with bipolar disorder[J]. Front Psychiatry, 2020, 11: 825.
doi: 10.3389/fpsyt.2020.00825 pmid: 32922322 |
[14] |
HAN X, LI H, WANG X, et al. Altered brain fraction amplitude of low frequency fluctuation at resting state in patients with early left and right bell's palsy: do they have differences?[J]. Front Neurosci, 2018, 12: 797.
doi: 10.3389/fnins.2018.00797 |
[15] |
COHEN J R. The behavioral and cognitive relevance of time-varying, dynamic changes in functional connectivity[J]. Neuroimage, 2018, 180(Pt B): 515-525.
doi: S1053-8119(17)30784-X pmid: 28942061 |
[16] |
ARKSEY H, O'MALLEY L. Scoping studies: towards a methodological framework[J]. Int J Soc Res Methodol, 2005, 8(1): 19-32.
doi: 10.1080/1364557032000119616 |
[17] | CHEN D, ZHANG R, ZHAO H, et al. A bibliometric analysis of the development of ICD-11 in medical informatics[J]. J Healthc Eng, 2019, 2019: 1649363. |
[18] | 曾宪涛, 包翠萍, 曹世义, 等. Meta分析系列之三:随机对照试验的质量评价工具[J]. 中国循证心血管医学杂志, 2012, 4(3): 183-185. |
ZENG X T, BAO C P, CAO S Y, et al. Chin J Evid Based Cardiovasc Med, 2012, 4(3): 183-185. | |
[19] |
VERHAGEN A P, DE VET H C, DE BIE R A, et al. The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus[J]. J Clin Epidemiol, 1998, 51(12): 1235-1241.
doi: 10.1016/s0895-4356(98)00131-0 pmid: 10086815 |
[20] |
TOSUN A, TURE S, ASKIN A, et al. Effects of low-frequency repetitive transcranial magnetic stimulation and neuromuscular electrical stimulation on upper extremity motor recovery in the early period after stroke: a preliminary study[J]. Top Stroke Rehabil, 2017, 24(5): 361-367.
doi: 10.1080/10749357.2017.1305644 pmid: 28327054 |
[21] |
GOTTLIEB A, BOLTZMANN M, SCHMIDT S B, et al. Treatment of upper limb spasticity with inhibitory repetitive transcranial magnetic stimulation: a randomized placebo-controlled trial[J]. NeuroRehabilitation, 2021, 49(3): 425-434.
doi: 10.3233/NRE-210088 |
[22] | GUO Z, JIN Y, BAI X, et al. Distinction of high- and low-frequency repetitive transcranial magnetic stimulation on the functional reorganization of the motor network in stroke patients[J]. Neural Plast, 2021, 2021: 8873221. |
[23] |
LEE I T, HUANG C C, HSU P C, et al. Resting-state network changes following transcranial magnetic stimulation in patients with aphasia: a randomized controlled study[J]. Neuromodulation, 2022, 25(4): 528-537.
doi: 10.1016/j.neurom.2021.10.004 |
[24] |
BAI G, JIANG L, HUAN S, et al. Study on low-frequency repetitive transcranial magnetic stimulation improves speech function and mechanism in patients with non-fluent aphasia after stroke[J]. Front Aging Neurosci, 2022, 14: 883542.
doi: 10.3389/fnagi.2022.883542 |
[25] | SZAFLARSKI J P, NENERT R, ALLENDORFER J B, et al. Intermittent theta burst stimulation (iTBS) for treatment of chronic post-stroke aphasia: results of a pilot randomized, double-blind, sham-controlled trial[J]. Med Sci Monit, 2021, 27: e931468. |
[26] | ALLENDORFER J B, NENERT R, VANNEST J, et al. A pilot randomized controlled trial of intermittent theta burst stimulation as stand-alone treatment for post-stroke aphasia: effects on language and verbal functional magnetic resonance imaging (fMRI)[J]. Med Sci Monit, 2021, 27: e934818. |
[27] | 陈栩铤, 顾旭东, 姚云海, 等. 单侧高频重复经颅磁刺激对脑卒中吞咽障碍及功能性磁共振成像的影响[J]. 中华物理医学与康复杂志, 2021, 43(12): 1105-1109. |
CHEN X T, GU X D, YAO Y H, et al. Transcranial magnetic stimulation can improve swallowing after a stroke[J]. Chin J Phys Med Rehabil, 2021, 43(12): 1105-1109. | |
[28] | 焦勇钢, 戴颖仪, 胡芳芳, 等. 重复经颅磁刺激对急性脑梗死后吞咽障碍的影响及与其功能磁共振成像变化的关系[J]. 实用医学杂志, 2020, 36(3): 385-389, 394. |
JIAO Y G, DAI Y Y, HU F F, et al. Effect of repetitive transcranial magnetic stimulation on dysphagia after acute cerebral infarction and its relationship with fMRI changes[J]. J Pract Med, 2020, 36(3): 385-389, 394. | |
[29] |
YIN M, LIU Y, ZHANG L, et al. Effects of rTMS treatment on cognitive impairment and resting-state brain activity in stroke patients: a randomized clinical trial[J]. Front Neural Circuits, 2020, 14: 563777.
doi: 10.3389/fncir.2020.563777 |
[30] | 罗红, 余茜. 基于静息态fMRI技术观察高频重复经颅磁刺激对出血性脑卒中认知功能的影响[J]. 中华物理医学与康复杂志, 2019, 41(4): 279-282. |
LUO H, YU Q. Chin J Phys Med Rehabil, 2019, 41(4): 279-282. | |
[31] |
LI Y, LUO H, YU Q, et al. Cerebral functional manipulation of repetitive transcranial magnetic stimulation in cognitive impairment patients after stroke: an fMRI study[J]. Front Neurol, 2020, 11: 977.
doi: 10.3389/fneur.2020.00977 pmid: 33013646 |
[32] |
LI Y, LI K, FENG R, et al. Mechanisms of repetitive transcranial magnetic stimulation on post-stroke depression: a resting-state functional magnetic resonance imaging study[J]. Brain Topogr, 2022, 35(3): 363-374.
doi: 10.1007/s10548-022-00894-0 pmid: 35286526 |
[33] |
ESHEL N, KELLER C J, WU W, et al. Global connectivity and local excitability changes underlie antidepressant effects of repetitive transcranial magnetic stimulation[J]. Neuropsychopharmacology, 2020, 45(6): 1018-1025.
doi: 10.1038/s41386-020-0633-z pmid: 32053828 |
[34] |
DU J, YANG F, HU J, et al. Effects of high- and low-frequency repetitive transcranial magnetic stimulation on motor recovery in early stroke patients: evidence from a randomized controlled trial with clinical, neurophysiological and functional imaging assessments[J]. Neuroimage Clin, 2019, 21: 101620.
doi: 10.1016/j.nicl.2018.101620 |
[35] |
GREFKES C, WARD N S. Cortical reorganization after stroke: how much and how functional?[J]. Neuroscientist, 2014, 20(1): 56-70.
doi: 10.1177/1073858413491147 pmid: 23774218 |
[36] |
JUAN D, YAO W, LI J, et al. Motor network reorganization after repetitive transcranial magnetic stimulation in early stroke patients: a resting state fMRI study[J]. Neurorehabil Neural Repair, 2022, 36(1): 61-68.
doi: 10.1177/15459683211054184 |
[37] |
JOHANSEN-BERG H, RUSHWORTH M F, BOGDANOVIC M D, et al. The role of ipsilateral premotor cortex in hand movement after stroke[J]. Proc Natl Acad Sci U S A, 2002, 99(22): 14518-14523.
doi: 10.1073/pnas.222536799 |
[38] |
EATON K P, SZAFLARSKI J P, ALTAYE M, et al. Reliability of fMRI for studies of language in post-stroke aphasia subjects[J]. Neuroimage, 2008, 41(2): 311-322.
doi: 10.1016/j.neuroimage.2008.02.033 pmid: 18411061 |
[39] |
NAESER M A, MARTIN P I, LUNDGREN K, et al. Improved language in a chronic nonfluent aphasia patient after treatment with CPAP and TMS[J]. Cogn Behav Neurol, 2010, 23(1): 29-38.
doi: 10.1097/WNN.0b013e3181bf2d20 pmid: 20299861 |
[40] |
SAUR D, LANGE R, BAUMGAERTNER A, et al. Dynamics of language reorganization after stroke[J]. Brain, 2006, 129(Pt 6): 1371-1384.
doi: 10.1093/brain/awl090 pmid: 16638796 |
[41] |
ZHANG J, ZHONG D, XIAO X, et al. Effects of repetitive transcranial magnetic stimulation (rTMS) on aphasia in stroke patients: a systematic review and meta-analysis[J]. Clin Rehabil, 2021, 35(8): 1103-1116.
doi: 10.1177/0269215521999554 |
[42] |
NAESER M A, HO M D, MARTIN P I, et al. Increased functional connectivity within intrinsic neural networks in chronic stroke following treatment with red/near-infrared transcranial photobiomodulation: case series with improved naming in aphasia[J]. Photobiomodul Photomed Laser Surg, 2020, 38(2): 115-131.
doi: 10.1089/photob.2019.4630 pmid: 31621498 |
[43] |
PISEGNA J M, KANEOKA A, PEARSON W J, et al. Effects of non-invasive brain stimulation on post-stroke dysphagia: a systematic review and meta-analysis of randomized controlled trials[J]. Clin Neurophysiol, 2016, 127(1): 956-968.
doi: S1388-2457(15)00309-0 pmid: 26070517 |
[44] |
TOOGOOD J A, SMITH R C, STEVENS T K, et al. Swallowing preparation and execution: insights from a delayed-response functional magnetic resonance imaging (fMRI) study[J]. Dysphagia, 2017, 32(4): 526-541.
doi: 10.1007/s00455-017-9794-2 pmid: 28361202 |
[45] |
FLOWERS H L, ALHARBI M A, MIKULIS D, et al. MRI-based neuroanatomical predictors of dysphagia, dysarthria, and aphasia in patients with first acute ischemic stroke[J]. Cerebrovasc Dis Extra, 2017, 7(1): 21-34.
doi: 10.1159/000457810 |
[46] |
FLOWERS H L, ALHARBI M A, MIKULIS D, et al. MRI-based neuroanatomical predictors of dysphagia, dysarthria, and aphasia in patients with first acute ischemic stroke[J]. Cerebrovasc Dis Extra, 2017, 7(1): 21-34.
doi: 10.1159/000457810 |
[47] | 蔡倩, 杨玺, 孙武东, 等. 双侧高频重复性经颅磁刺激治疗脑卒中后吞咽障碍的疗效观察[J]. 中华物理医学与康复杂志, 2019, 41(12): 932-933. |
CAI Q, YANG X, SUN W D, et al. Chin J Phys Med Rehabil, 2019, 41(12): 932-933. | |
[48] |
LIU J, QIN W, WANG H, et al. Altered spontaneous activity in the default-mode network and cognitive decline in chronic subcortical stroke[J]. J Neurol Sci, 2014, 347(1-2): 193-198.
doi: 10.1016/j.jns.2014.08.049 pmid: 25304057 |
[49] |
CAO W, CAO X, HOU C, et al. Effects of cognitive training on resting-state functional connectivity of default mode, salience, and central executive networks[J]. Front Aging Neurosci, 2016, 8: 70.
doi: 10.3389/fnagi.2016.00070 pmid: 27148042 |
[50] |
CHAI X J, WHITFIELD-GABRIELI S, SHINN A K, et al. Abnormal medial prefrontal cortex resting-state connectivity in bipolar disorder and schizophrenia[J]. Neuropsychopharmacology, 2011, 36(10): 2009-2017.
doi: 10.1038/npp.2011.88 pmid: 21654735 |
[51] |
FOX M D, SNYDER A Z, VINCENT J L, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks[J]. Proc Natl Acad Sci U S A, 2005, 102(27): 9673-9678.
doi: 10.1073/pnas.0504136102 |
[52] | TANG Y, CHEN A, ZHU S, et al. Repetitive transcranial magnetic stimulation for depression after basal ganglia ischaemic stroke: protocol for a multicentre randomised double-blind placebo-controlled trial[J]. BMJ Open, 2018, 8(2): e18011. |
[53] |
ZHANG P, WANG J, XU Q, et al. Altered functional connectivity in post-ischemic stroke depression: a resting-state functional magnetic resonance imaging study[J]. Eur J Radiol, 2018, 100: 156-165.
doi: S0720-048X(18)30003-2 pmid: 29373162 |
[54] |
GREICIUS M D, FLORES B H, MENON V, et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus[J]. Biol Psychiatry, 2007, 62(5): 429-437.
doi: 10.1016/j.biopsych.2006.09.020 |
[55] |
LASSALLE-LAGADEC S, SIBON I, DILHARREGUY B, et al. Subacute default mode network dysfunction in the prediction of post-stroke depression severity[J]. Radiology, 2012, 264(1): 218-224.
doi: 10.1148/radiol.12111718 |
[56] | 朱祖福, 刘冬柏, 张剑宇, 等. 卒中后抑郁患者的局部一致性降低:静息态功能磁共振成像研究[J]. 国际脑血管病杂志, 2012, 20(7): 501-503. |
ZHU Z F, LIU D B, ZHANG J Y, et al. Decreased regional homogeneity in patients with poststroke depression: a resting-state functional magnetic resonance imaging study[J]. Int J Cerebrovasc Dis, 2012, 20(7): 501-503. | |
[57] | 杨蓉蓉, 朴翔宇. 卒中后抑郁患者的脑区功能活动分析[J]. 河北医药, 2019, 41(19): 3007-3009. |
YANG R R, PU X Y. Analysis for the brain region activities in patients with post-stroke depression[J]. Hebei Med J, 2019, 41(19): 3007-3009. | |
[58] | 许毅, 李达, 谭立文, 等. 重复经颅磁刺激治疗专家共识[J]. 转化医学杂志, 2018, 7(1): 4-9. |
XU Y, LI D, TAN L W, et al. Chinese Experts Consensus on Repetitive Transcranial Magnetic Stimulation[J]. Transl Med J, 2018, 7(1): 4-9.
doi: 10.1186/1479-5876-7-4 |
|
[59] |
GREFKES C, FINK G R. Noninvasive brain stimulation after stroke: It is time for large randomized controlled trials![J]. Curr Opin Neurol, 2016, 29(6): 714-720.
pmid: 27648877 |
[60] |
GUGGISBERG A G, KOCH P J, HUMMEL F C, et al. Brain networks and their relevance for stroke rehabilitation[J]. Clin Neurophysiol, 2019, 130(7): 1098-1124.
doi: S1388-2457(19)30127-0 pmid: 31082786 |
[61] |
HENG H M, LU M K, CHOU L W, et al. Changes in balance, gait and electroencephalography oscillations after robot-assisted gait training: an exploratory study in people with chronic stroke[J]. Brain Sci, 2020, 10(11): 821.
doi: 10.3390/brainsci10110821 |
[62] | 严晓华, 徐开寿. 经颅磁刺激在儿童神经康复中的应用进展[J]. 中国康复医学杂志, 2014, 29(10): 995-998. |
YAN X H, XU K S. Chin J Rehabil Med, 2014, 29(10): 995-998. |
[1] | 邵伟婷, 雷江华. 反应中断再定向干预孤独症谱系障碍儿童刻板语言的效果:Scoping综述[J]. 《中国康复理论与实践》, 2024, 30(1): 10-20. |
[2] | 罗丽华, 王雨生, 李剑锋, 董继革. 术后早期综合康复对儿童青少年肱骨髁上骨折伴尺神经损伤的效果[J]. 《中国康复理论与实践》, 2024, 30(1): 105-110. |
[3] | 林娜, 高菡璐, 卢惠苹, 陈燕清, 郑军凡, 陈述荣. 虚拟现实技术对脑卒中上肢功能影响的弥散张量成像研究[J]. 《中国康复理论与实践》, 2024, 30(1): 61-67. |
[4] | 王昊懿, 史亚伟, 鲁俊, 许光旭. 主观垂直感知障碍对脑卒中患者功能影响的回顾性研究[J]. 《中国康复理论与实践》, 2024, 30(1): 68-73. |
[5] | 陈珺雯, 陈谦, 陈程, 李淑月, 刘玲玲, 吴存书, 龚翔, 鲁俊, 许光旭. 改良八段锦身体活动对脑卒中患者心肺功能、运动功能和日常生活活动能力的效果[J]. 《中国康复理论与实践》, 2024, 30(1): 74-80. |
[6] | 胡永林, 马颖, 窦超, 陆安民, 江小鸽, 宋新建, 肖玉华. 肩部控制训练联合神经松动术对脑卒中偏瘫患者肩痛及上肢功能的效果[J]. 《中国康复理论与实践》, 2024, 30(1): 81-86. |
[7] | 刘冬, 徐子涵, 李江, 鞠萍. M1区联合背外侧前额叶高频重复经颅磁刺激对脊髓损伤后神经病理性疼痛患者脑电图θ振幅的效果[J]. 《中国康复理论与实践》, 2024, 30(1): 87-94. |
[8] | 王贺, 韩靓, 阚梦凡, 于少泓. 电刺激治疗脑卒中后肩手综合征有效性的系统评价与Meta分析[J]. 《中国康复理论与实践》, 2023, 29(9): 1048-1056. |
[9] | 孙藤方, 任梦婷, 杨琳, 王耀霆, 王红雨, 闫兴洲. 高压氧治疗联合重复外周磁刺激干预脑卒中患者踝运动功能和平衡能力的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 875-881. |
[10] | 王亚楠, 刘西花. 脑卒中偏瘫患者主观和客观平衡功能测量的相关性及预测效能[J]. 《中国康复理论与实践》, 2023, 29(8): 890-895. |
[11] | 王海云, 王寅, 周信杰, 何爱群. 基于“中枢-外周-中枢”理论的经颅直流电刺激结合针刺干预脑卒中患者中枢及上肢功能的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 919-925. |
[12] | 陈怡婷, 王倩, 崔慎红, 李映彩, 张思鈺, 魏衍旭, 任慧, 冷军, 陈斌. 双侧序贯重复经颅磁刺激干预脑卒中患者上肢运动功能的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 926-932. |
[13] | 李振亚, 孙洁, 郭鹏飞, 王光明. 脑卒中患者口期和咽期吞咽功能改变与误吸的相关性:基于电视透视吞咽检查[J]. 《中国康复理论与实践》, 2023, 29(8): 933-939. |
[14] | 蒙象强, 熊琪, 陈庚发, 白洋, 邹田子, 冯珍. 经颅磁刺激联合正中神经电刺激干预不同年龄段慢性意识障碍的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 940-947. |
[15] | 张园, 杨剑. 基于世界卫生组织健康促进学校架构的学校健康服务及效果:Scoping综述[J]. 《中国康复理论与实践》, 2023, 29(7): 791-799. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|