《中国康复理论与实践》 ›› 2023, Vol. 29 ›› Issue (2): 174-181.doi: 10.3969/j.issn.1006-9771.2023.02.006
收稿日期:
2022-09-28
修回日期:
2022-11-08
出版日期:
2023-02-25
发布日期:
2023-03-16
通讯作者:
金沐
E-mail:jinmu0119@hotmail.com
作者简介:
罗兰(1993-),女,汉族,四川冕宁县人,硕士研究生,主要研究方向:心血管手术、危重症围手术期麻醉管理和围手术期脏器保护。
基金资助:
Received:
2022-09-28
Revised:
2022-11-08
Published:
2023-02-25
Online:
2023-03-16
Contact:
JIN Mu
E-mail:jinmu0119@hotmail.com
Supported by:
摘要:
目的 探讨氙气后处理对大鼠脊髓缺血再灌注损伤(SCIRI)后自噬的影响及其与苏氨酸蛋白激酶(Akt)信号通路的关系。方法 30只健康雄性Sprague-Dawley大鼠随机分为假手术组(Sham组)、脊髓缺血再灌注组(I/R组)和氙气后处理组(Xe组),每组10只。后两组通过夹闭腹主动脉85 min,再灌注4 h建立大鼠SCIRI模型。于再灌注1 h时,Xe组经呼吸机吸入50%氙气+50%氧气混合气1 h。其余两组吸入50%氮气+50%氧气混合气1 h。再灌注4 h时,对大鼠行BBB评分和斜板试验后,收集L3-5脊髓,Nissl染色计数正常神经元数量,Western blotting检测脊髓组织中Akt、磷酸化Akt(p-Akt)、自噬蛋白〔p62、Beclin 1、微管相关蛋白1轻链3 (LC3)Ⅰ和LC3 Ⅱ〕的表达,逆转录实时定量聚合酶链反应检测脊髓组织中p62、Beclin 1和LC3 Ⅱ mRNA的表达。结果 与Sham组相比,I/R组后肢BBB评分明显降低(P < 0.01),斜板试验最大倾斜度明显减小(P < 0.01),正常神经元数量明显减少(P < 0.01);p-Akt/Akt比值明显降低(P < 0.01);Beclin 1蛋白表达明显上调(P < 0.01),LC3 Ⅱ/LC3 Ⅰ比值明显升高(P < 0.01),p62蛋白表达下调,且Beclin 1 mRNA和LC3 Ⅱ mRNA的含量增加,p62 mRNA含量明显减少(P < 0.01)。与I/R组相比,Xe组后肢BBB评分明显升高(P < 0.01),斜板试验最大倾斜度明显增大(P < 0.01),正常神经元数量明显增加(P < 0.01);p-Akt蛋白表达上调,p-Akt/Akt比值明显升高(P < 0.01);Beclin 1蛋白的表达明显下调(P < 0.01),LC3 Ⅱ/ LC3 Ⅰ比值明显降低(P < 0.01),p62蛋白的表达明显上调(P < 0.01),p62 mRNA的含量明显增加(P < 0.01),LC3 Ⅱ mRNA 的含量减少(P < 0.05)。结论 氙气后处理可以减轻SCIRI,可能与激活Akt通路,抑制自噬水平有关。
中图分类号:
罗兰, 李璐, 金沐. 氙气后处理对脊髓缺血再灌注损伤的效果:Akt信号通路和自噬机制[J]. 《中国康复理论与实践》, 2023, 29(2): 174-181.
LUO Lan, LI Lu, JIN Mu. Effect of xenon post-conditioning on spinal cord ischemia/reperfusion injury in rats: regulating Akt signaling pathway and autophagy[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(2): 174-181.
[1] |
GAUDINO M, KHAN F M, RAHOUMA M, et al. Spinal cord injury after open and endovascular repair of descending thoracic and horacoabdominal aortic aneurysms: a meta-analysis[J]. J Thorac Cardiovasc Surg, 2022, 163(2): 552-564.
doi: 10.1016/j.jtcvs.2020.04.126 |
[2] |
KHACHATRYAN Z, HAUNSCHILD J, VON ASPERN K, et al. Ischemic spinal cord injury-experimental evidence and evolution of protective measures[J]. Ann Thorac Surg, 2022, 113(5): 1692-1702.
doi: 10.1016/j.athoracsur.2020.12.028 |
[3] |
MAZE M, LAITIO T. Neuroprotective properties of xenon[J]. Mol Neurobiol, 2020, 57(1): 118-124.
doi: 10.1007/s12035-019-01761-z pmid: 31758401 |
[4] |
LIU F, LIU S L, PATTERSON T A, et al. Effects of xenon-based anesthetic exposure on the expression levels of polysialic acid neural cell adhesion molecule (PSA-NCAM) on human neural stem cell-derived neurons[J]. Mol Neurobiol, 2020, 57(1): 217-225.
doi: 10.1007/s12035-019-01771-x pmid: 31522383 |
[5] | 罗兰, 佟家祺, 李璐, 等. 氙气后处理对大鼠脊髓缺血再灌注损伤起保护作用:基于下调mTOR通路和抑制内质网应激介导的神经元凋亡[J]. 南方医科大学学报, 2022, 42(8): 1256-1262. |
LUO L, TONG J Q, LI L, et al. Xenon post-conditioning protects against spinal cord ischemia-reperfusion injury in rats by downregulating mTOR pathway and inhibiting endoplasmic reticulum stress-induced neuronal apoptosis[J]. J South Med Univ, 2022, 42(8): 1256-1262. | |
[6] | 侯思雨, 杨彦伟, 金沐, 等. 大鼠脊髓缺血再灌注损伤后ERK、Akt的表达与细胞凋亡关系的研究[J]. 心肺血管病杂志, 2015, 34(1): 62-64. |
HOU S Y, YANG Y W, JIN M, et al. Neuronal apoptosis and expressions of ERK, Akt in rats with spinal cord ischemia reperfusion injury[J]. J Cardiov Pulm Dis, 2015, 34(1): 62-64. | |
[7] |
YANG Y W, LU J K, QING E M, et al. Post-conditioning by xenon reduces ischaemia-reperfusion injury of the spinal cord in rats[J]. Acta Anaesthesiol Scand, 2012, 56(10): 1325-1331.
doi: 10.1111/j.1399-6576.2012.02718.x pmid: 22621442 |
[8] |
YANG Y W, CHENG W P, LU J K, et al. Timing of xenon-induced delayed postconditioning to protect against spinal cord ischemia-reperfusion injury in rats[J]. Br J Anaesth, 2014, 113(1): 168-176.
doi: 10.1093/bja/aet352 |
[9] |
YANG Y W, WANG Y L, LU J K, et al. Delayed xenon post-conditioning mitigates spinal cord ischemia/reperfusion injury in rabbits by regulating microglial activation and inflammatory factors[J]. Neural Regen Res, 2018, 13(3): 510-517.
doi: 10.4103/1673-5374.228757 |
[10] |
LIU S Y, YANG Y W, JIN M, et al. Xenon-delayed postconditioning attenuates spinal cord ischemia/reperfusion injury through activation Akt and ERK signaling pathways in rats[J]. J Neurol Sci, 2016, 368: 277-284.
doi: 10.1016/j.jns.2016.07.009 pmid: 27538649 |
[11] | LIU G Y, SABATINI D M. mTOR at the nexus of nutrition, growth, ageing and disease[J]. Nat Rev Mol Cell Biol, 2020, 21(4): 183-203. |
[12] |
BERTACCHINI J, HEIDARI N, MEDIANI L, et al. Targeting PI3K/AKT/mTOR network for treatment of leukemia[J]. Cell Mol Life Sci, 2015, 72(12): 2337-2347.
doi: 10.1007/s00018-015-1867-5 pmid: 25712020 |
[13] |
REZQ S, HASSAN R, MAHMOUD M F. Rimonabant ameliorates hepatic ischemia/reperfusion injury in rats: involvement of autophagy via modulating ERK- and PI3K/AKT-mTOR pathways[J]. Int Immunopharmacol, 2021, 100: 108140.
doi: 10.1016/j.intimp.2021.108140 |
[14] |
SHI B H, MA M Q, ZHENG Y T, et al. mTOR and Beclin1: two key autophagy-related molecules and their roles in myocardial ischemia/reperfusion injury[J]. J Cell Physiol, 2019, 234(8): 12562-12568.
doi: 10.1002/jcp.28125 pmid: 30618070 |
[15] |
ZHOU K L, ZHENG Z L, LI Y, et al. TFE3, a potential therapeutic target for spinal cord injury via augmenting autophagy flux and alleviating ER stress[J]. Theranostics, 2020, 10(20): 9280-9302.
doi: 10.7150/thno.46566 pmid: 32802192 |
[16] | MUÑOZ-GALDEANO T, REIGADA D, et al. Cell specific changes of autophagy in a mouse model of contusive spinal cord injury[J]. Front Cell Neurosci, 2018, 12: 164. |
[17] |
BASSO D M, BEATTIE M S, BRESNAHAN J C. A sensitive and reliable locomotor rating scale for open field testing in rats[J]. J Neurotrauma, 1995, 12(1): 1-21.
doi: 10.1089/neu.1995.12.1 |
[18] |
GUO Y, MA Y, PAN Y L, et al. Jisuikang, a Chinese herbal formula, increases neurotrophic factor expression and promotes the recovery of neurological function after spinal cord injury[J]. Neural Regen Res, 2017, 12(9): 1519-1528.
doi: 10.4103/1673-5374.215264 pmid: 29089999 |
[19] |
MORAIS R, ANDRADE L, LOURENÇO A, et al. How xenon works: neuro and cardioprotection mechanisms[J]. Acta Med Port, 2014, 27(2): 259-265.
doi: 10.20344/amp.4782 |
[20] |
LIANG M, AHMAD F, DICKINSON R. Neuroprotection by the noble gases argon and xenon as treatments for acquired brain injury: a preclinical systematic review and meta-analysis[J]. Br J Anaesth, 2022, 129(2): 200-218.
doi: 10.1016/j.bja.2022.04.016 pmid: 35688658 |
[21] |
ZHANG Y R, ZHANG M D, LIU S H, et al. Xenon exerts anti-seizure and neuroprotective effects in kainic acid-induced status epilepticus and neonatal hypoxia-induced seizure[J]. Exp Neurol, 2019, 322: 113054.
doi: 10.1016/j.expneurol.2019.113054 |
[22] |
DANDEKAR M P, YIN X, PENG T, et al. Repetitive xenon treatment improves post-stroke sensorimotor and neuropsychiatric dysfunction[J]. J Affect Disord, 2022, 301: 315-330.
doi: 10.1016/j.jad.2022.01.025 |
[23] |
DE DEKEN J, REX S, LERUT E, et al. Postconditioning effects of argon or xenon on early graft function in a porcine model of kidney autotransplantation[J]. Br J Surg, 2018, 105(8): 1051-1060.
doi: 10.1002/bjs.10796 pmid: 29603122 |
[24] |
PENG T, BRITTON G L, KIM H, et al. Therapeutic time window and dose dependence of xenon delivered via echogenic liposomes for neuroprotection in stroke[J]. CNS Neurosci Ther, 2013, 19(10): 773-784.
doi: 10.1111/cns.12159 pmid: 23981565 |
[25] |
ZHAO H L, HUANG H, OLOGUNDE R, et al. Xenon treatment protects against remote lung injury after kidney transplantation in rats[J]. Anesthesiology, 2015, 122(6): 1312-1326.
doi: 10.1097/ALN.0000000000000664 pmid: 25856291 |
[26] | GU C J, LI L W, HANG Y F, et al. Salidroside ameliorates mitochondria-dependent neuronal apoptosis after spinal cord ischemia-reperfusion injury partially through inhibiting oxidative stress and promoting mitophagy[J]. Oxid Med Cell Longev, 2020, 2020: 3549704. |
[27] |
ZHENG W J, LIU B, SHI E Y. Perillaldehyde alleviates spinal cord ischemia-reperfusion injury via activating the Nrf2 pathway[J]. J Surg Res, 2021, 268: 308-317.
doi: 10.1016/j.jss.2021.06.055 pmid: 34399353 |
[28] |
LUO C L, TAO L Y. The function and mechanisms of autophagy in spinal cord injury[J]. Adv Exp Med Biol, 2020, 1207: 649-654.
doi: 10.1007/978-981-15-4272-5_47 pmid: 32671782 |
[29] |
LIAO H Y, WANG Z Q, RAN R, et al. Biological functions and therapeutic potential of autophagy in spinal cord injury[J]. Front Cell Dev Biol, 2021, 9: 761273.
doi: 10.3389/fcell.2021.761273 |
[30] |
ZHANG D, WANG F, ZHAI X, et al. Lithium promotes recovery of neurological function after spinal cord injury by inducing autophagy[J]. Neural Regen Res, 2018, 13(12): 2191-2199.
doi: 10.4103/1673-5374.241473 pmid: 30323152 |
[31] |
LI W C, YAO S P, LI H R, et al. Curcumin promotes functional recovery and inhibits neuronal apoptosis after spinal cord injury through the modulation of autophagy[J]. J Spinal Cord Med, 2021, 44(1): 37-45.
doi: 10.1080/10790268.2019.1616147 |
[32] |
VARGOVA I, MACHOVA URDZIKOVA L, KAROVA K, et al. Involvement of mTOR pathways in recovery from spinal cord injury by modulation of autophagy and immune response[J]. Biomedicines, 2021, 9(6): 593.
doi: 10.3390/biomedicines9060593 |
[33] |
ZHOU K L, SANSUR C A, XU H Z, et al. The temporal pattern, flux, and function of autophagy in spinal cord injury[J]. Int J Mol Sci, 2017, 18(2): 466.
doi: 10.3390/ijms18020466 |
[34] |
DUPONT N, JIANG S Y, PILLI M, et al. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β[J]. EMBO J, 2011, 30(23): 4701-4711.
doi: 10.1038/emboj.2011.398 pmid: 22068051 |
[35] |
CHEN H C, FONG T H, LEE A W, et al. Autophagy is activated in injured neurons and inhibited by methylprednisolone after experimental spinal cord injury[J]. Spine, 2012, 37(6): 470-475.
doi: 10.1097/BRS.0b013e318221e859 |
[36] | MARQUEZ R T, XU L. Bcl-2: Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch[J]. Am J Cancer Res, 2012, 2(2): 214-221. |
[37] |
RONG Y L, FAN J, JI C Y, et al. USP11 regulates autophagy-dependent ferroptosis after spinal cord ischemia-reperfusion injury by deubiquitinating Beclin 1[J]. Cell Death Differ, 2022, 29(6): 1164-1175.
doi: 10.1038/s41418-021-00907-8 |
[38] |
KANNO H, OZAWA H, SEKIGUCHI A, et al. The role of autophagy in spinal cord injury[J]. Autophagy, 2009, 5(3): 390-392.
pmid: 19158496 |
[39] |
HOU H P, ZHANG L H, ZHANG L C, et al. Acute spinal cord injury in rats induces autophagy activation[J]. Turk Neurosurg, 2014, 24(3): 369-373.
doi: 10.5137/1019-5149.JTN.8623-13.0 pmid: 24848176 |
[40] |
ZHANG D, YUAN Y, ZHU J C, et al. Insulin-like growth factor 1 promotes neurological functional recovery after spinal cord injury through inhibition of autophagy via the PI3K/Akt/mTOR signaling pathway[J]. Exp Ther Med, 2021, 22(5): 1265.
doi: 10.3892/etm.2021.10700 pmid: 34594402 |
[41] |
CHEN Z, FU Q G, SHEN B L, et al. Enhanced p62 expression triggers concomitant autophagy and apoptosis in a rat chronic spinal cord compression model[J]. Mol Med Rep, 2014, 9(6): 2091-2096.
doi: 10.3892/mmr.2014.2124 pmid: 24715058 |
[42] |
JEONG S J, ZHANG X, RODRIGUEZ-VELEZ A, et al. p62/SQSTM1 and selective autophagy in cardiometabolic diseases[J]. Antioxid Redox Signal, 2019, 31(6): 458-471.
doi: 10.1089/ars.2018.7649 |
[43] |
LAMARK T, SVENNING S, JOHANSEN T. Regulation of selective autophagy: the p62/SQSTM1 paradigm[J]. Essays Biochem, 2017, 61(6): 609-624.
doi: 10.1042/EBC20170035 pmid: 29233872 |
[1] | 刘冬, 徐子涵, 李江, 鞠萍. M1区联合背外侧前额叶高频重复经颅磁刺激对脊髓损伤后神经病理性疼痛患者脑电图θ振幅的效果[J]. 《中国康复理论与实践》, 2024, 30(1): 87-94. |
[2] | 李芳, 霍速, 杜巨豹, 刘秀贞, 李小爽, 宋为群. 经颅直流电刺激联合任务导向性康复训练对脊髓损伤大鼠前肢运动障碍的效果[J]. 《中国康复理论与实践》, 2023, 29(7): 777-781. |
[3] | 刘宁, 刘雨泉, 祝斌, 于凌佳, 谭海宁, 杨雍, 李想. 脊髓损伤神经学分类国际标准国内应用情况的文献计量学研究[J]. 《中国康复理论与实践》, 2023, 29(7): 808-815. |
[4] | 王一吉, 周红俊, 何泽佳, 刘根林, 郑樱, 郝春霞, 卫波, 康海琼, 张缨, 逯晓蕾, 袁媛, 蒙倩茹. 不完全性脊髓损伤患者运动功能对称性与步态对称性的关系[J]. 《中国康复理论与实践》, 2023, 29(6): 639-645. |
[5] | 袁媛, 周红俊, 丛欣莹, 刘根林, 卫波, 郑樱, 郝春霞, 张缨, 王一吉, 康海琼, 逯晓蕾, 蒙倩茹. 创伤性颈脊髓损伤程度与磁共振成像的关系[J]. 《中国康复理论与实践》, 2023, 29(6): 725-730. |
[6] | 康晓宇, 刘丽旭, 王文竹, 王云雷. 普拉克索联合左旋多巴对全脑缺血再灌注损伤大鼠认知能力及线粒体功能的影响[J]. 《中国康复理论与实践》, 2023, 29(5): 533-540. |
[7] | 蒋乐, 杜良杰, 黄富表. 完全性脊髓损伤患者的情绪及认知行为分析[J]. 《中国康复理论与实践》, 2023, 29(5): 576-581. |
[8] | 郭霜, 谢咏祺, 张良, 张春佳, 彭润, 杨德刚, 杨明亮. 舞蹈致儿童无骨折脱位型脊髓损伤神经学预后的影响因素及预测模型[J]. 《中国康复理论与实践》, 2023, 29(5): 582-589. |
[9] | 张园, 杨剑. 基于ICD-11和ICF脊髓损伤患者运动康复干预方案及其健康效益:系统综述的系统综述[J]. 《中国康复理论与实践》, 2023, 29(12): 1377-1385. |
[10] | 石孝宇, 杨剑. 脊髓损伤患者适应性身体活动及其健康效益:基于ICF的Scoping综述[J]. 《中国康复理论与实践》, 2023, 29(12): 1395-1404. |
[11] | 黄志霖, 徐发邵, 施静, 黄淦, 刘梅芳, 张霞辉. 线栓法建立卒中后吞咽障碍的大鼠模型[J]. 《中国康复理论与实践》, 2023, 29(10): 1147-1153. |
[12] | 秦彦强, 董浩, 孙迎春, 程先宽, 姚海江. 不同针刺方案对卒中后抑郁大鼠神经递质及相关炎性因子的影响[J]. 《中国康复理论与实践》, 2023, 29(1): 30-37. |
[13] | 刘根林,周红俊,李建军,卫波,郑樱,郝春霞,张缨,王一吉,康海琼,逯晓蕾,袁媛,蒙倩茹. 伴并发症脊髓损伤的神经学分类研究进展[J]. 《中国康复理论与实践》, 2022, 28(8): 934-938. |
[14] | 缪培,张通,米海霞,张伟东. 不同线栓法复制局灶性脑缺血模型大鼠恢复期学习记忆能力的差异及其机制[J]. 《中国康复理论与实践》, 2022, 28(7): 789-796. |
[15] | 康海琼,周红俊,刘根林,卫波,郑樱,张缨,郝春霞,王一吉,逯晓蕾,袁媛,蒙倩茹. 脊髓损伤患者股骨远端和胫骨近端骨密度的变化[J]. 《中国康复理论与实践》, 2022, 28(7): 855-858. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|