[1] |
HANKEY G J. Stroke[J]. Lancet, 2017, 389(10069): 641-654.
doi: S0140-6736(16)30962-X
pmid: 27637676
|
[2] |
HELD J P O, YU K, PYLES C, et al. Augmented reality-based rehabilitation of gait impairments: case report[J]. JMIR mHealth and uHealth, 2020, 8(5): e17804.
doi: 10.2196/17804
|
[3] |
HUANG S J, YU X M, WANG K, et al. Short-step adjustment and proximal compensatory strategies adopted by stroke survivors with knee extensor spasticity for obstacle crossing[J]. Front Bioeng Biotechnol, 2020, 8: 939.
doi: 10.3389/fbioe.2020.00939
|
[4] |
GEERARS M, MINNAAR-VAN DER FEEN N, HUISSTEDE B M A. Treatment of knee hyperextension in post-stroke gait. A systematic review[J]. Gait Posture, 2022, 91: 137-148.
doi: 10.1016/j.gaitpost.2021.08.016
|
[5] |
YU H X. Observation of the therapeutic effect of correcting foot varus on improving knee hyperextension and gait in patients after stroke[J]. Curr Neurovasc Res, 2021, 18(3): 314-317.
doi: 10.2174/1567202618666210923150711
|
[6] |
BEYAERT C, VASA R, FRYKBERG G E. Gait post-stroke: pathophysiology and rehabilitation strategies[J]. Neurophys Clin, 2015, 45(4/5): 335-355.
doi: 10.1016/j.neucli.2015.09.005
|
[7] |
SHANKARANARAYANA A M, GURURAJ S, NATARAJAN M, et al. Gait training interventions for patients with stroke in India: a systematic review[J]. Gait Posture, 2021, 83: 132-140.
doi: 10.1016/j.gaitpost.2020.10.012
pmid: 33137637
|
[8] |
SUNDEMO D, MIKKELSEN C, CRISTIANI R, et al. Contralateral knee hyperextension is associated with increased anterior tibial translation and fewer meniscal injuries in the anterior cruciate ligament-injured knee[J]. Knee Surg Sports Traumatol Arthrosc, 2018, 26(10): 3020-3028.
doi: 10.1007/s00167-018-5047-7
|
[9] |
DALAL K K, JOSHUA A M, NAYAK A, et al. Effectiveness of prowling with proprioceptive training on knee hyperextension among stroke subjects using videographic observation: a randomised controlled trial[J]. Gait Posture, 2018, 61: 232-237.
doi: 10.1016/j.gaitpost.2018.01.018
|
[10] |
TANG L, LIU S, GAN L, et al. Effects of dry needling intervention on lower limb dysfunction after stroke: study protocol for a randomised controlled trial[J]. BMJ Open, 2022, 12(10): e062494.
doi: 10.1136/bmjopen-2022-062494
|
[11] |
APPASAMY M, DE WITT M E, PATEL N, et al. Treatment strategies for genu recurvatum in adult patients with hemiparesis: a case series[J]. PM R, 2015, 7(2): 105-112.
doi: 10.1016/j.pmrj.2014.10.015
|
[12] |
SOUISSI H, ZORY R, BREDIN J, et al. Co-contraction around the knee and the ankle joints during post-stroke gait[J]. Eur J Phys Rehabil Med, 2018, 54(3): 380-387.
|
[13] |
WANG W, LI K, YUE S, et al. Associations between lower-limb muscle activation and knee flexion in post-stroke individuals: a study on the stance-to-swing phases of gait[J]. PLoS One, 2017, 12(9): e0183865.
doi: 10.1371/journal.pone.0183865
|
[14] |
SANTOS G F, JAKUBOWITZ E, PRONOST N, et al. Predictive simulation of post-stroke gait with functional electrical stimulation[J]. Sci Rep, 2021, 11(1): 21351.
doi: 10.1038/s41598-021-00658-z
pmid: 34725376
|
[15] |
SIJOBERT B, AZEVEDO C, PONTIER J, et al. A sensor-based multichannel FES system to control knee joint and reduce stance phase asymmetry in post-stroke gait[J]. Sensors, 2021, 21(6): 2134.
doi: 10.3390/s21062134
|
[16] |
HOMAN K, YAMAMOTO K, KADOYA K, et al. Comprehensive validation of a wearable foot sensor system for estimating spatiotemporal gait parameters by simultaneous three-dimensional optical motion analysis[J]. BMC Sport Sci Med Rehabil, 2022, 14(1): 71.
doi: 10.1186/s13102-022-00461-x
|
[17] |
AGOSTINI V, GHISLIERI M, ROSATI S, et al. Surface electromyography applied to gait analysis: how to improve its impact in clinics?[J]. Front Neurol, 2020, 11: 994.
doi: 10.3389/fneur.2020.00994
pmid: 33013656
|
[18] |
DIERICK F, SCHREIBER C, LAVALLéE P, et al. Asymptomatic genu recurvatum reshapes lower limb sagittal joint and elevation angles during gait at different speeds[J]. Knee, 2021, 29: 457-468.
doi: 10.1016/j.knee.2021.02.003
pmid: 33743261
|
[19] |
DESCHAMPS K, EERDEKENS M, GEENTJENS J, et al. A novel approach for the detection and exploration of joint coupling patterns in the lower limb kinetic chain[J]. Gait Posture, 2018, 62: 372-377.
doi: S0966-6362(18)30306-0
pmid: 29625413
|
[20] |
曾进胜, 刘鸣, 崔丽英. 中国各类主要脑血管病诊断要点2019[J]. 中华神经科杂志, 2019, 52(9): 710-715.
|
|
ZENG J S, LIU M, CUI L Y. Diagnostic Criteria of Cerebrovascular Diseases in China (version 2019)[J]. Chin J Neurol, 2019, 52(9): 710-715.
|
[21] |
DANIILIDIS K, JAKUBOWITZ E, THOMANN A, et al. Does a foot-drop implant improve kinetic and kinematic parameters in the foot and ankle?[J]. Arch Orthop Trauma Surg, 2017, 137(4): 499-506.
doi: 10.1007/s00402-017-2652-8
|
[22] |
WANG T, ZHONG R, LIU S, et al. Effects of nonelastic taping and dual task on kinematics and kinetics of the ankle joint[J]. J Healthcare Eng, 2021, 2021: 8866453.
|
[23] |
BAE D Y, KIM S Y, PARK S R, et al. Effects of non-paretic arm movements during bridge exercises on trunk muscle activity in stroke patients[J]. J Phys Ther Sci, 2019, 31(4): 291-294.
doi: 10.1589/jpts.31.291
|
[24] |
KAZEMINIA M, RAJATI F, RAJATI M. The effect of pelvic floor muscle-strengthening exercises on low back pain: a systematic review and meta-analysis on randomized clinical trials[J]. [ahead of print]. Neurol Sci, 2022. doi: 10.1007/s10072-022-06430-z.
doi: 10.1007/s10072-022-06430-z
|
[25] |
BUCKTHORPE M, STRIDE M, VILLA F D. Assessing and treating gluteus maximus weakness: a clinical commentary[J]. Int J Sport Phys Ther, 2019, 14(4): 655-669.
doi: 10.26603/ijspt20190655
|
[26] |
邱继宏, 于涛, 刘卉. 脑卒中患者膝过伸原因和康复治疗方法研究进展[J]. 中国康复医学杂志, 2019, 34(6): 746-751.
|
|
QIU J H, YU T, LIU H. Chin J Rehabil Med, 2019, 34(6): 746-751.
|
[27] |
LI S, FRANCISCO G E, ZHOU P. Post-stroke hemiplegic gait: new perspective and insights[J]. Front Physiol, 2018, 9: 1021.
doi: 10.3389/fphys.2018.01021
pmid: 30127749
|
[28] |
徐光青, 兰月, 毛玉瑢, 等. 影响脑卒中偏瘫患者步行能力的三维运动学因素分析[J]. 中华物理医学与康复杂志, 2010, 32(9): 673-676.
|
|
XU G Q, LAN Y, MAO Y R, et al. The influence of three-dimensional kinematic factors on the walking capacity of hemiparetic stroke patients[J]. Chin J Phys Med Rehabil, 2010, 32(9): 673-676.
|
[29] |
CHOW J W, STOKIC D S. Relations between knee and ankle muscle coactivation and temporospatial gait measures in patients without hypertonia early after stroke[J]. Exp Brain Res, 2020, 238(12): 2909-2919.
doi: 10.1007/s00221-020-05936-2
pmid: 33063171
|
[30] |
CHANTRAINE F, SCHREIBER C, KOLANOWSKI E, et al. Control of stroke-related genu recurvatum with prolonged timing of dorsiflexor functional electrical stimulation: a case study[J]. J Neurol Phys Ther, 2016, 40(3): 209-215.
doi: 10.1097/NPT.0000000000000137
pmid: 27164309
|
[31] |
BŁAŻKIEWICZ M, WISZOMIRSKA I, KACZMARCZYK K, et al. Mechanisms of compensation in the gait of patients with drop foot[J]. Clin Biomech, 2017, 42: 14-19.
doi: 10.1016/j.clinbiomech.2016.12.014
|
[32] |
姜亚斌, 邹任玲, 刘建, 等. 表面肌电信号的下肢痉挛信号特征分析与识别[J]. 电子科技, 2017, 30(11): 38-41.
|
|
JIANG Y B, ZOU R L, LIU J, et al. Feature analysis and recognition of lower limb spasm signal of surface EMG signal[J]. Electron Sci Tech, 2017, 30(11): 38-41.
|