[1] |
GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015[J]. Lancet, 2016, 388(10053): 1545-1602.
doi: S0140-6736(16)31678-6
pmid: 27733282
|
[2] |
MEHL A L, THOMSON V. The Colorado newborn hearing screening project, 1992-1999: on the threshold of effective population-based universal newborn hearing screening[J]. Pediatrics, 2002, 109(1): E7.
doi: 10.1542/peds.109.1.e7
pmid: 11773575
|
[3] |
BHARADWAJ T, SCHRAUWEN I, REHMAN S, et al. ADAMTS1, MPDZ, MVD, and SEZ6: candidate genes for autosomal recessive nonsyndromic hearing impairment[J]. Eur J Hum Genet, 2022, 30(1): 22-33.
doi: 10.1038/s41431-021-00913-x
|
[4] |
VAN CAMP G S R. Hereditary Hearing Loss[EB/OL]. (2022-02-17) [2022-09-13]. https://hereditaryhearingloss.org.
|
[5] |
SMITH R J H, IWASA Y, SCHAEFER A M. Pendred Syndrome/Nonsyndromic Enlarged Vestibular Aqueduct[M]// ADAM M P, EVERMAN D B, MIRZAA G M, et al. GeneReviews. Seattle, WA: University of Washington, Seattle, 2020.
|
[6] |
HODGE S E, THOMPSON N J, PARK L R, et al. Enlarged vestibular aqueduct: hearing progression and cochlear implant candidacy in pediatric patients[J]. Otol Neurotol, 2021, 42(1): 203-206.
doi: 10.1097/MAO.0000000000003034
pmid: 33885268
|
[7] |
XIA J H, LIU C Y, TANG B S, et al. Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment[J]. Nat Genet, 1998, 20(4): 370-373.
doi: 10.1038/3845
pmid: 9843210
|
[8] |
YUAN Y, YOU Y, HUANG D, et al. Comprehensive molecular etiology analysis of nonsyndromic hearing impairment from typical areas in China[J]. J Transl Med, 2009, 7: 79.
doi: 10.1186/1479-5876-7-79
pmid: 19744334
|
[9] |
XIANG Y B, TANG S H, LI H Z, et al. Mutation analysis of common deafness-causing genes among 506 patients with nonsyndromic hearing loss from Wenzhou city, China[J]. Int J Pediatr Otorhinolaryngol, 2019, 122: 185-190.
doi: 10.1016/j.ijporl.2019.04.024
|
[10] |
SLOAN-HEGGEN C M, BIERER A O, SHEARER A E, et al. Comprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss[J]. Hum Genet, 2016, 135(4): 441-450.
doi: 10.1007/s00439-016-1648-8
|
[11] |
FAREED M, SHARMA V, SINGH I, et al. Whole-exome sequencing reveals a rare variant of OTOF gene causing congenital non-syndromic hearing loss among large Muslim families favoring consanguinity[J]. Front Genet, 2021, 12: 641925.
|
[12] |
WU T, CUI L, MOU Y, et al. A newly identified mutation (c.2029 C>T) in SLC26A4 gene is associated with enlarged vestibular aqueducts in a Chinese family[J]. BMC Med Genomics, 2022, 15(1): 49.
doi: 10.1186/s12920-022-01200-4
|
[13] |
KARI E, LLACI L, GO J L, et al. Genes implicated in rare congenital inner ear and cochleovestibular nerve malformations[J]. Ear Hear, 2020, 41(4): 983-989.
|
[14] |
TSUKAMOTO K, SUZUKI H, HARADA D, et al. Distribution and frequencies of PDS (SLC26A4) mutations in Pendred syndrome and nonsyndromic hearing loss associated with enlarged vestibular aqueduct: a unique spectrum of mutations in Japanese[J]. Eur J Hum Genet, 2003, 11(12): 916-922.
pmid: 14508505
|
[15] |
USAMI S, ABE S, WESTON M D, et al. Non-syndromic hearing loss associated with enlarged vestibular aqueduct is caused by PDS mutations[J]. Hum Genet, 1999, 104(2): 188-192.
pmid: 10190331
|
[16] |
WANG Q J, ZHAO Y L, RAO S Q, et al. A distinct spectrum of SLC26A4 mutations in patients with enlarged vestibular aqueduct in China[J]. Clin Genet, 2007, 72(3): 245-254.
doi: 10.1111/j.1399-0004.2007.00862.x
pmid: 17718863
|
[17] |
AZAIEZ H, YANG T, PRASAD S, et al. Genotype-phenotype correlations for SLC26A4-related deafness[J]. Hum Genet, 2007, 122(5): 451-457.
pmid: 17690912
|
[18] |
CHOI B Y, MADEO A C, KING K A, et al. Segregation of enlarged vestibular aqueducts in families with non-diagnostic SLC26A4 genotypes[J]. J Med Genet, 2009, 46(12): 856-861.
doi: 10.1136/jmg.2009.067892
pmid: 19578036
|
[19] |
MEY K, MUHAMAD A A, TRANEBJAERG L, et al. Association of SLC26A4 mutations, morphology, and hearing in pendred syndrome and NSEVA[J]. Laryngoscope, 2019, 129(11): 2574-2579.
doi: 10.1002/lary.27319
|
[20] |
FORLI F, LAZZERINI F, AULETTA G, et al. Enlarged vestibular aqueduct and Mondini malformation: audiological, clinical, radiologic and genetic features[J]. Eur Arch Otorhinolaryngol, 2021, 278(7): 2305-2312.
doi: 10.1007/s00405-020-06333-9
|
[21] |
YU R, WANG K, XIONG Y, et al. A novel mutation of X-linked recessive deafness gene POU3F4 in a boy with congenital deafness[J]. Laryngoscope Investig Otolaryngol, 2022, 7(4): 1150-1154.
|
[22] |
MEYER K, UELAND P M. Use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for multiplex genotyping[J]. Adv Clin Chem, 2011, 53: 1-29.
pmid: 21404912
|
[23] |
ZHANG J, ZHANG J, TAO R, et al. Mass spectrometry-based SNP genotyping as a potential tool for ancestry inference and human identification in Chinese Han and Uygur populations[J]. Sci Justice, 2019, 59(3): 228-233.
doi: S1355-0306(18)30188-6
pmid: 31054813
|
[24] |
BRAY M S, BOERWINKLE E, DORIS P A. High-throughput multiplex SNP genotyping with MALDI-TOF mass spectrometry: practice, problems and promise[J]. Hum Mutat, 2001, 17(4): 296-304.
pmid: 11295828
|
[25] |
WANG Y, CHEN W, LIU Z, et al. Comparison of the mutation spectrum of common deafness-causing genes in 509 patients with nonsyndromic hearing loss in 4 different areas of China by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry[J]. J Int Adv Otol, 2021, 17(6): 492-499.
doi: 10.5152/iao.2021.21086
pmid: 35177385
|
[26] |
DAI P, YU F, HAN B, et al. GJB2 mutation spectrum in 2,063 Chinese patients with nonsyndromic hearing impairment[J]. J Transl Med, 2009, 7: 26.
doi: 10.1186/1479-5876-7-26
pmid: 19366456
|
[27] |
BABANEJAD M, BEHESHTIAN M, JAMSHIDI F, et al. Genetic etiology of hearing loss in Iran[J]. Hum Genet, 2022, 141(3-4): 623-631.
doi: 10.1007/s00439-021-02421-w
pmid: 35050400
|
[28] |
YUAN E F, XIA W, HUANG J T, et al. A sensitive and convenient method for clinical detection of non-syndromic hearing loss-associated common mutations[J]. Gene, 2017, 628: 322-328.
doi: 10.1016/j.gene.2017.07.045
|
[29] |
GRIFFITH A J, WANGEMANN P. Hearing loss associated with enlargement of the vestibular aqueduct: mechanistic insights from clinical phenotypes, genotypes, and mouse models[J]. Hear Res, 2011, 281(1-2): 11-17.
doi: 10.1016/j.heares.2011.05.009
|
[30] |
MASUDA S, USUI S. Comparison of the prevalence and features of inner ear malformations in congenital unilateral and bilateral hearing loss[J]. Int J Pediatr Otorhinolaryngol, 2019, 125: 92-97.
doi: 10.1016/j.ijporl.2019.06.028
|
[31] |
METWALLY M I, ALAYOUTY N A, BASHA M A A. Ear malformations: what do radiologists need to know?[J]. Clin Imaging, 2020, 66: 42-53.
doi: 10.1016/j.clinimag.2020.04.022
|
[32] |
YUAN Y, GUO W, TANG J, et al. Molecular epidemiology and functional assessment of novel allelic variants of SLC26A4 in non-syndromic hearing loss patients with enlarged vestibular aqueduct in China[J]. PLoS One, 2012, 7(11): e49984.
|
[33] |
ALBERT S, BLONS H, JONARD L, et al. SLC26A4 gene is frequently involved in nonsyndromic hearing impairment with enlarged vestibular aqueduct in Caucasian populations[J]. Eur J Hum Genet, 2006, 14(6): 773-779.
doi: 10.1038/sj.ejhg.5201611
pmid: 16570074
|
[34] |
RENDTORFF N D, SCHRIJVER I, LODAHL M, et al. SLC26A4 mutation frequency and spectrum in 109 Danish Pendred syndrome/DFNB4 probands and a report of nine novel mutations[J]. Clin Genet, 2013, 84(4): 388-391.
doi: 10.1111/cge.12074
pmid: 23336812
|