《中国康复理论与实践》 ›› 2022, Vol. 28 ›› Issue (12): 1459-1465.doi: 10.3969/j.issn.1006-9771.2022.12.011
收稿日期:
2022-11-17
修回日期:
2022-11-29
出版日期:
2022-12-25
发布日期:
2023-01-10
通讯作者:
肖晓飞
E-mail:xxf1013@126.com
作者简介:
黄兆欣(1997-),女,汉族,山东菏泽市人,硕士研究生,主要研究方向:运动生物力学。|肖晓飞(1980-),男,汉族,山东荣成市人,博士,副教授,主要研究方向:ICF应用、康复科学。
基金资助:
HUANG Zhaoxin,ZHANG Yi,CUI Chenxi,ZHU Xiaojing,XIAO Xiaofei()
Received:
2022-11-17
Revised:
2022-11-29
Published:
2022-12-25
Online:
2023-01-10
Contact:
XIAO Xiaofei
E-mail:xxf1013@126.com
Supported by:
摘要:
目的 应用ICF和生物力学手段评定和分析“内八字”步态下肢肌肉活动和足底压力特征。
方法 2021年9月至2022年5月,共招募60例青年女性,30例异常步态(步向角 < -18°)作为试验组,30例正常步态作为对照组。运用《国际功能、残疾和健康分类》(ICF)对下肢运动功能进行编码,采用无线表面肌电测试仪和鞋垫式足底压力系统测试下肢肌肉表面肌电信号和足底压力。
结果 试验组胫骨前肌的积分肌电值(iEMG)和肌肉贡献率高于对照组(|t| > 2.000, P < 0.05),股直肌的iEMG和肌肉贡献率低于对照组(|t| > 2.233, P < 0.05);第2~5跖骨区、足跟外侧区和全足区域的接触面积(t > 2.879, P < 0.01),第1跖骨区、中足区和足跟外侧区的压力峰值(t > 2.720, P < 0.01),第1~5跖骨区和足跟外侧区的峰值压强(t > 2.079, P < 0.05)以及第1、4跖骨区和足跟外侧区的冲量(t > 2.310, P < 0.05)高于对照组,在足跟内侧区域的冲量(t = -3.024, P = 0.002)低于对照组。
结论 “内八字”步态者以胫骨前肌和股直肌肌肉活动异常为主;足跟外侧区的接触面积较大,峰值压力、压强和冲量较高;足跟内侧区域的冲量较低。
中图分类号:
黄兆欣,张艺,崔晨曦,祝晓静,肖晓飞. 基于ICF的青年女性“内八字”步态生物力学分析[J]. 《中国康复理论与实践》, 2022, 28(12): 1459-1465.
HUANG Zhaoxin,ZHANG Yi,CUI Chenxi,ZHU Xiaojing,XIAO Xiaofei. Biomechanical analysis of in-toeing gait in young females based on ICF[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(12): 1459-1465.
表4
两组间足底接触面积比较 单位:cm2"
分区 | 对照组 | 试验组 | t值 | P值 |
---|---|---|---|---|
第1趾骨区 | 3.71±1.73 | 3.84±1.46 | 0.635 | 0.551 |
第2趾骨区 | 1.74±1.01 | 1.61±0.86 | -0.607 | 0.551 |
第3趾骨区 | 1.29±0.75 | 0.96±0.69 | -0.848 | 0.396 |
第4、5趾骨区 | 0.31±0.35 | 0.54±0.70 | 0.433 | 0.665 |
第1跖骨区 | 6.47±2.06 | 6.41±2.69 | -0.144 | 0.887 |
第2跖骨区 | 4.95±0.48 | 6.21±0.91 | 3.640 | < 0.001 |
第3跖骨区 | 5.80±0.44 | 7.19±0.60 | 3.985 | < 0.001 |
第4跖骨区 | 6.26±0.38 | 7.59±0.96 | 3.004 | 0.002 |
第5跖骨区 | 5.22±1.21 | 8.00±1.20 | 4.042 | < 0.001 |
中足区 | 8.67±5.98 | 10.24±6.18 | 0.716 | 0.474 |
足跟内侧区 | 11.90±3.31 | 12.69±2.26 | 0.453 | 0.654 |
足跟外侧区 | 10.00±1.27 | 13.89±1.41 | 2.882 | 0.002 |
全足 | 61.93± 9.73 | 71.18±7.27 | 2.879 | 0.003 |
表5
两组间足底压力峰值比较 单位:N"
分区 | 对照组 | 试验组 | t值 | P值 |
---|---|---|---|---|
第1趾骨区 | 9.28±6.99 | 9.79±10.37 | 0.780 | 0.443 |
第2趾骨区 | 2.58±2.45 | 2.48±3.23 | -0.462 | 0.671 |
第3趾骨区 | 1.55±0.50 | 1.15±1.02 | -1.249 | 0.218 |
第4、5趾骨区 | 0.23±0.33 | 0.27±0.52 | 0.162 | 0.912 |
第1跖骨区 | 7.23±4.02 | 16.65±3.90 | 4.043 | < 0.001 |
第2跖骨区 | 8.58±1.53 | 7.68±4.06 | -1.589 | 0.114 |
第3跖骨区 | 13.62±3.92 | 12.71±4.05 | -0.578 | 0.590 |
第4跖骨区 | 11.13±4.41 | 14.27±5.51 | 1.819 | 0.068 |
第5跖骨区 | 6.68±3.65 | 13.01±6.13 | 1.570 | 0.116 |
中足区 | 5.02±4.44 | 13.69±9.20 | 2.720 | 0.005 |
足跟内侧区 | 42.50±17.14 | 34.53±9.06 | -1.250 | 0.218 |
足跟外侧区 | 27.48±6.32 | 42.08±3.65 | 2.882 | 0.002 |
全足 | 111.07±6.14 | 130.94±32.28 | 1.589 | 0.114 |
表6
两组间足底峰值压强比较 单位:kPa"
分区 | 对照组 | 试验组 | t值 | P值 |
---|---|---|---|---|
第1趾骨区 | 310.08±275.33 | 316.83±283.90 | 0.289 | 0.799 |
第2趾骨区 | 137.92±97.21 | 107.67±78.37 | -0.838 | 0.410 |
第3趾骨区 | 102.70±24.65 | 91.30±61.95 | -1.209 | 0.247 |
第4、5趾骨区 | 38.30±38.70 | 28.70±33.67 | -0.713 | 0.529 |
第1跖骨区 | 123.50±51.93 | 220.50±86.99 | 4.044 | < 0.001 |
第2跖骨区 | 108.33±30.45 | 164.92±31.00 | 3.205 | 0.001 |
第3跖骨区 | 179.67±46.99 | 274.83±47.72 | 3.495 | < 0.001 |
第4跖骨区 | 142.67±35.45 | 274.92±75.41 | 4.042 | < 0.001 |
第5跖骨区 | 103.50±30.34 | 180.33±73.96 | 2.079 | 0.039 |
中足区 | 84.70±34.45 | 110.50±66.47 | 0.681 | 0.529 |
足跟内侧区 | 561.00±287.12 | 343.40±136.06 | -1.777 | 0.075 |
足跟外侧区 | 376.33±47.45 | 536.33±28.46 | 2.882 | 0.002 |
全足 | 589.42±280.84 | 532.92±215.10 | -0.347 | 0.755 |
表7
两组间足底冲量比较 单位:N·s"
分区 | 对照组 | 试验组 | t值 | P值 |
---|---|---|---|---|
第1趾骨区 | 25.6±29.77 | 41.60±28.01 | 1.762 | 0.078 |
第2趾骨区 | 18.52±19.35 | 41.60±28.01 | 0.641 | 0.589 |
第3趾骨区 | 21.8±14.69 | 32.19±25.04 | 1.058 | 0.315 |
第4、5趾骨区 | 8.47±9.59 | 14.80±21.71 | 0.154 | 0.912 |
第1跖骨区 | 23.82±12.11 | 47.72±21.87 | 2.714 | 0.006 |
第2跖骨区 | 34.90±13.47 | 46.26±16.86 | 1.386 | 0.178 |
第3跖骨区 | 48.37±18.08 | 83.51±30.50 | 1.762 | 0.078 |
第4跖骨区 | 45.01±22.82 | 85.88±35.08 | 2.714 | 0.006 |
第5跖骨区 | 29.78±15.38 | 58.55±27.33 | 0.578 | 0.590 |
中足区 | 20.93±10.04 | 23.89±11.60 | 0.378 | 0.739 |
足跟内侧区 | 118.94±20.25 | 85.23±45.94 | -3.024 | 0.002 |
足跟外侧区 | 70.42±14.65 | 81.22±18.93 | 2.310 | 0.020 |
全足 | 72.05±11.99 | 75.98±8.29 | 0.404 | 0.713 |
[1] |
XU L, CHEN J, WANG F, et al. Machine-learning-based children's pathological gait classification with low-cost gait-recognition system[J]. Biomed Eng Online, 2021, 20(1): 62.
doi: 10.1186/s12938-021-00898-0 pmid: 34158070 |
[2] | 曹丹丹, 张秀丽, 杜高山, 等. 儿童内八字足底压力特点及矫正效果探析[J]. 体育科学, 2014, 34(4): 78-83. |
CAO D D, ZHANG X L, DU G S, et al. Plantar pressure characteristics of toe-in gait children and corrective effects with different management[J]. Chin Sport Sci, 2014, 34(4): 78-83. | |
[3] | 霍洪峰, 吴艳霞, 付丽敏, 等. 女青年异常步态行走时的足底压力特征[J]. 中国康复医学杂志, 2009, 24(9):841-843, 765. |
HUO H F, WU Y X, FU L M, et al. Characteristics of plantar pressure in young women with abnormal gait[J]. Chin J Rehabil Med, 2009, 24(9): 841-843, 765. | |
[4] | PANYARACHUN P, ANGTHONG C, JINDASAKCHAI P, et al. Abnormal foot pressure in older adults with knee osteoarthritis: a systematic review[J]. Eur Rev Med Pharmacol Sci, 2022, 26(17): 6236-6241. |
[5] | SCHELHAAS R, HAJIBOZORGI M, HORTOBÁGYI T, et al. Conservative interventions to improve foot progression angle and clinical measures in orthopedic and neurological patients: a systematic review and meta-analysis[J]. J Biomech, 2022, 130: 110831. |
[6] | 蔡祖林, 李彦培, 王浩林, 等. 大学生不良步态的生物力学特征及影响因素[J]. 体育学刊, 2017, 24(4): 133-139. |
CAI Z L, LI Y P, WANG H L, et al. Biomechanical characteristics and affecting factors of undesirable gaits of university students[J]. J Phys Educ, 2017, 24(4): 133-139. | |
[7] | HO C S, LIN C J, CHOU Y L, et al. Foot progression angle and ankle joint complex in preschool children[J]. Clin Biomech (Bristol, Avon), 2000, 15(4): 271-277. |
[8] | WEN J X, YANG H H, HAN S M, et al. Trunk balance, head posture and plantar pressure in adolescent idiopathic scoliosis[J]. Front Pediatr, 2022, 10: 979816. |
[9] |
KYUNG M G, BAK P R, LIM J W, et al. The effect of backpack load on intersegmental motions of the foot and plantar pressure in individuals with mild flatfoot[J]. J Foot Ankle Res, 2022, 15(1): 76.
doi: 10.1186/s13047-022-00579-8 pmid: 36243804 |
[10] | YU H, LIU S, DAI P, et al. Effects of repetitive transcranial magnetic stimulation on gait and postural control ability of patients with executive dysfunction after stroke[J]. Brain Sci, 2022, 12(9): 1185. |
[11] | 世界卫生组织. 国际功能、残疾和健康分类(国际中文增补版)[M]. 邱卓英,译. 日内瓦: 世界卫生组织, 2015. |
World Health Organization. International Classification of Function, Disability and Health (International Chinese Supplement)[M]. QIU Z Y, trans trans. Geneva: World Health Organization, 2015. | |
[12] | 邱卓英, 刘巧艳. 康复领域联合应用ICD-11与ICF[J]. 中国康复理论与实践, 2019, 25(1): 21. |
QIU Z Y, LIU Q Y. Using ICD-11 and ICF in rehabilitation[J]. Chin J Rehabil Theory Pract, 2019, 25(1): 21. | |
[13] | 邱卓英, 李伦, 陈迪, 等. 基于世界卫生组织国际健康分类家族康复指南研究:理论架构和方法体系[J]. 中国康复理论与实践, 2020, 26(2): 125-135. |
QIU Z Y, LI L, CHEN D, et al. Research on rehabilitation guidelines using World Health Organization Family International Classifications: framework and approaches[J]. Chin J Rehabil Theory Pract, 2020, 26(2): 125-135. | |
[14] | PIERCE C B, MUNOZ A, NG D K, et al. Age- and sex-dependent clinical equations to estimate glomerular filtration rates in children and young adults with chronic kidney disease[J]. Kidney Int, 2021, 99(4): 948-956. |
[15] | FEODOROFF B, BLÜMER V. Unilateral non-electric assistive walking device helps neurological and orthopedic patients to improve gait patterns[J]. Gait Posture, 2022, 92: 294-301. |
[16] | YU H B, TAI W H, LI J, et al. Effects of shoe midsole hardness on lower extremity biomechanics during jump rope in healthy males[J]. Healthcare (Basel), 2021, 9(10): 1394. |
[17] | BARTOLO E, GIACOMOZZI C, COPPINI D V, et al. The effect of induced joint restriction on plantar pressure during gait: a pilot study[J]. Gait Posture, 2021, 90: 23-28. |
[18] |
MIN S D, WANG C, PARK D S, et al. Development of a textile capacitive proximity sensor and gait monitoring system for smart healthcare[J]. J Med Syst, 2018, 42(4): 76.
doi: 10.1007/s10916-018-0928-3 pmid: 29532314 |
[19] |
KIM Y J, KIM H S, LEE J H, et al. Magnetic resonance imaging-based lower limb muscle evaluation in Charcot-Marie-Tooth disease type 1A patients and its correlation with clinical data[J]. Sci Rep, 2022, 12(1): 16622.
doi: 10.1038/s41598-022-21112-8 pmid: 36198750 |
[20] | CORATELLA G, TORNATORE G, CACCAVALE F, et al. The activation of gluteal, thigh, and lower back muscles in different squat variations performed by competitive bodybuilders: implications for resistance training[J]. Int J Environ Res Public Health, 2021, 18(2): 772. |
[21] | GEYH S, CIEZA A, SCHOUTEN J, et al. ICF Core Sets for stroke[J]. J Rehabil Med, 2004, 44(Suppl): 135-141. |
[22] | LINDEMANN I, COOMBES B K, TUCKER K, et al. Age-related differences in gastrocnemii muscles and Achilles tendon mechanical properties in vivo[J]. J Biomech, 2020, 112: 110067. |
[23] |
GOROSTIAGA E M, GONZÁLEZ-IZAL M, MALANDA A, et al. Blood lactate and sEMG at different knee angles during fatiguing leg press exercise[J]. Eur J Appl Physiol, 2012, 112(4): 1349-1358.
doi: 10.1007/s00421-011-2090-1 pmid: 21800091 |
[24] | 宋红云, 李建华, 戴雪松, 等. 前交叉韧带损伤患者及健康人膝关节屈肌协同收缩的对比研究[J]. 中国运动医学杂志, 2015, 34(11): 1054-1057. |
SONG H Y, LI J H, DAI X S, et al. Comparing co-contraction of knee flexors between patients with ACLD and healthy persons[J]. Chin J Sports Med, 2015, 34(11): 1054-1057. | |
[25] | 鲁智勇, 普江艳, 解强, 等. 优秀橄榄球运动员侧切跑的下肢肌电特征[J]. 中国体育科技, 2021, 57(8): 22-28. |
LU Z Y, PU J Y, XIE Q, et al. Lower limbs EMG characteristics of side-cut runing for elite rugby players[J]. Chin Sport Sci Technol, 2021, 57(8): 22-28. | |
[26] | SHIAVI R, LIMBIRD T, BORRA H, et al. Electromyography profiles of knee joint musculature during pivoting: changes induced by anterior cruciate ligament deficiency[J]. J Electromyogr Kinesiol, 1991, 1(1): 49-57. |
[27] | YAN S H, ZHANG K, TAN G Q, et al. Effects of obesity on dynamic plantar pressure distribution in Chinese prepubescent children during walking[J]. Gait Posture, 2013, 37(1): 37-42. |
[28] |
TOKUNAGA K, NAKAI Y, MATSUMOTO R, et al. Effect of foot progression angle and lateral wedge insole on a reduction in knee adduction moment[J]. J Appl Biomech, 2016, 32(5): 454-461.
doi: 10.1123/jab.2015-0163 pmid: 27249655 |
[29] | XIA H, CHARLTON J M, SHULL P B, et al. Portable, automated foot progression angle gait modification via a proof-of-concept haptic feedback-sensorized shoe[J]. J Biomech, 2020, 107: 109789. |
[30] | RICHARDS J D, SANCHEZ-BALLESTER J, JONES R K, et al. A comparision of knee braces during walking for the treatment of osteoarthritis of the medial compartment of the knee[J]. J Bone Joint Surg Br, 2005, 87(7): 937-939. |
[31] | 孙东杰, 宋爱国. 基于传感阵列的动态足底压力分布测量系统[J]. 仪器仪表学报, 2022, 43(6): 83-91. |
SUN D J, SONG A G. A dynamic plantar pressure distribution measurement system based on sensor array[J]. Chin J Sci Instr, 2022, 43(6): 83-91. | |
[32] | 王建国, 唐佳, 董继革, 等. 功能性踝关节不稳足底压力分析[J]. 中国康复理论与实践, 2022, 28(10): 1217-1223. |
WANG J G, TANG J, DONG J G, et al. Analysis of plantar pressure for functional ankle instability[J]. Chin J Rehabil Theory Pract, 2022, 28(10): 1217-1223. | |
[33] | 林琴琴, 李若明, 耿元文, 等. 3-35岁健康男性自然行走时足底压力的特征与变化[J]. 中国组织工程研究, 2021, 25(15): 2315-2320. |
LIN Q Q, LI R M, GENG Y W, et al. Characteristics and changes of plantar pressure of healthy men aged 3-35 years old during natural walking[J]. Chin J Tiss Engin Res, 2021, 25(15): 2315-2320. | |
[34] | 刘程程, 元香南, 张立新, 等. 老年人与健康大学生平地行走时足底压力特征比较[J]. 中国康复理论与实践, 2015, 21(5): 544-548. |
LIU C C, YUAN X N, ZHANG L X, et al. Characteristics of plantar pressure between old people and young students walking on flat[J]. Chin J Rehabil Theory Pract, 2015, 21(5): 544-548. | |
[35] |
ROSENBAUM D. Foot loading patterns can be changed by deliberately walking with in-toeing or out-toeing gait modifications[J]. Gait Posture, 2013, 38(4): 1067-1069.
doi: 10.1016/j.gaitpost.2013.04.001 pmid: 23623607 |
[36] | 马玉宝, 王晨曦, 高维广, 等. 体表感觉训练对前交叉韧带重建术后患者足偏角和足底冲量的影响[J]. 中国康复理论与实践, 2022, 28(9): 1096-1103. |
MA Y B, WANG C X, GAO W G, et al. Effects of surface sensation training on foot deflection and plantar impulse after anterior cruciate ligament reconstruction[J]. Chin J Rehabil Theory Pract, 2022, 28(9): 1096-1103. | |
[37] | BERCOVITZ T, HERMAN A, SOLOMONOW-AVNON D, et al. Plantar pressure modifications in experienced runners following an exhaustive run[J]. Sports Biomech, 2022, 21(10): 1189-1199. |
[38] | 郎松, 何毓玺, 吕波. 步态分析在膝关节骨性关节炎诊断中的应用[J]. 中华中医药学刊, 2016, 34(10): 2427-2430. |
LANG S, HE Y X, LÜ B. Application of gait analysis in diagnosis of knee osteoarthritis[J]. Chin Arch Trad Chin Med, 2016, 34(10): 2427-2430. | |
[39] | YOSHIOKA M, KUBO T, COUTTS R D, et al. Differences in the repair process of longitudinal and transverse injuries of cartilage in the rat knee[J]. Osteoarthritis Cartilage, 1998, 6(1): 66-75. |
[40] |
ASTEPHEN J L, DELUZIO K J, CALDWELL G E, et al. Gait and neuromuscular pattern changes are associated with differences in knee osteoarthritis severity levels[J]. J Biomech, 2008, 41(4): 868-876.
pmid: 18078943 |
[41] | 邱卓英, 郭键勋, 李伦, 等. 世界卫生组织康复指南«健康服务体系中的康复»:背景、理论架构与方法、主要内容和实施[J]. 中国康复理论与实践, 2020, 26(1): 16-20. |
QIU Z Y, KOWK J K F, LI L, et al. World Health Organization Rehabilitation Guide Rehabilitation in Health Service System: background, theoretical framework and methods, main contents and implementation[J]. Chin J Rehabil Theory Pract, 2020, 26(1):16-20. | |
[42] | 世界卫生组织. 健康服务体系中的康复[J]. 邱卓英,郭键勋,李伦,译. 中国康复理论与实践, 2020, 26(1): 1-14. |
World Health Organization. Rehabilitation in Health Systems[J]. QIU Z Y, KOWK J K F, LI L,trans. Chin J Rehabil Theory Pract, 2020, 26(1):1-14. |
[1] | 马圣楠, 柯竟悦, 董洪铭, 李建萍, 张洪浩, 刘超, 沈双, 李古强. 核心稳定性训练干预前交叉韧带重建术后动态平衡及表面肌电的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 882-889. |
[2] | 崔尧, 丛芳, 黄富表, 曾明, 颜如秀. 不同镜像神经元训练策略下脑与肌肉的活动特征:基于近红外光谱与表面肌电图技术[J]. 《中国康复理论与实践》, 2023, 29(7): 782-790. |
[3] | 李丹, 王剑雄, 黄茂茂, 胥方元, 曾秋, 李佶钖, 李洋, 夏翠宏, 郑雅丹, 胥章彧, 方雯凤, 万腾刚. 健康中老年女性上下楼梯时下肢肌肉的表面肌电图表现[J]. 《中国康复理论与实践》, 2023, 29(6): 731-737. |
[4] | 袁媛, 杨剑. 社区老年人身体活动融合慢性病管理的健康效益:Scoping综述[J]. 《中国康复理论与实践》, 2023, 29(5): 541-550. |
[5] | 王芳, 杨涛, 何耀广, 曹子君, 刘国庆, 胡军, 张建国, 樊瑜波. 基于糖尿病患者步态周期足底压力的变刚度鞋垫设计[J]. 《中国康复理论与实践》, 2023, 29(4): 408-415. |
[6] | 曹雨菡, 李瑾, 何民, 王丹, 陈伟. 基于ICF冠心病患者远程康复的Scoping综述[J]. 《中国康复理论与实践》, 2023, 29(4): 433-442. |
[7] | 田俊夫, 杨剑. 物质滥用导致精神行为障碍有氧运动康复的健康和功能效益的系统综述[J]. 《中国康复理论与实践》, 2023, 29(4): 443-451. |
[8] | 张雪茹, 陈思齐, 胡伟斌, 刘巧云. 基于ICF-CY的残疾儿童综合性口语沟通功能调查[J]. 《中国康复理论与实践》, 2023, 29(3): 320-325. |
[9] | 宋贝贝, 刘辉, 柏开祥. 基于ICF-CY残疾儿童青少年运动功能评价量表内容和心理测量指标的Scoping综述[J]. 《中国康复理论与实践》, 2023, 29(2): 182-192. |
[10] | 杨亚茹, 杨剑. 基于ICD-11和ICF的活动和参与与生活质量测量工具的内容比较[J]. 《中国康复理论与实践》, 2023, 29(12): 1454-1464. |
[11] | 王玉昌, 吴月, 付亏杰, 王正辉, 王亚洲, 郭学军, 庞伟. 基于ICF-CY平衡姿态悬吊治疗方案的设计[J]. 《中国康复理论与实践》, 2023, 29(11): 1316-1326. |
[12] | 叶绿, 王斌, 邱服冰. 大学生身体活动的心理行为健康和功能效果:基于ICF的系统综述[J]. 《中国康复理论与实践》, 2023, 29(1): 38-47. |
[13] | 朱旭,刘静,董泽萍,仇大伟. 基于表面肌电图手势动作意图识别的系统综述[J]. 《中国康复理论与实践》, 2022, 28(9): 1032-1038. |
[14] | 郭彤彤,杨剑,吴铭,郭正茂. 电竞活动对青少年健康和功能的影响及康复干预的系统综述[J]. 《中国康复理论与实践》, 2022, 28(8): 879-888. |
[15] | 杨晓龙,杨亚茹,邱服冰,郭凤宜,黄锦文,曹磊,张甜甜,宋为群. 基于ICF的作业治疗:理论架构与方法体系[J]. 《中国康复理论与实践》, 2022, 28(6): 621-629. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|