[1] |
ESCHMANN H, HÉROUX M E, CHEETHAM J H, et al. Thumb and finger movement is reduced after stroke: an observational study[J]. PLoS One, 2019, 14(6):e0217969.
doi: 10.1371/journal.pone.0217969
|
[2] |
全国审定委员会审定. 运动医学名词[M]. 北京: 科学出版社, 2019.
|
|
China National Committee for Terminology in Science and Techology Chinese Terms in Sports Medicine [M]. Beijing: Science Press, 2019.
|
[3] |
KAMPER D G, RYMER W Z. Impairment of voluntary control of finger motion following stroke: role of inappropriate muscle coactivation[J]. Muscle Nerve, 2001, 24(5):673-681.
doi: 10.1002/(ISSN)1097-4598
|
[4] |
INGEMANSON M L, ROWE J R, CHAN V, et al. Neural correlates of passive position finger sense after stroke[J]. Neurorehabil Neural Repair, 2019, 33(9):740-750.
doi: 10.1177/1545968319862556
|
[5] |
朱燕, 齐瑞, 张宏, 等. 恢复期脑卒中患者肘屈伸肌群最大等长收缩的表面肌电图研究[J]. 中国康复, 2006, 21(5):308-310.
|
|
ZHU Y, QI R, ZHANG H, et al. Surface electromyography study on maximum isometric contraction of elbow flexor and extensor at the convalescence stage of stroke patients[J]. Chin J Rehabil, 2006, 21(5):308-310.
|
[6] |
杨慧馨, 刘晓蕾. 太极拳和八段锦对脑卒中患者偏瘫下肢运动功能和表面肌电图的效果[J]. 中国康复理论与实践, 2019, 25(1):107-112.
|
|
YANG H X, LIU X L. Effects of Taiji Quan and Baduanjin on motor function of lower limbs for stroke patients using surface electromyography[J]. Chin J Rehabil Theory Pract, 2019, 25(1):107-112.
|
[7] |
戈含笑, 肖红雨, 陈雪丹, 等. 评价运动控制与反馈训练对脑卒中后踝关节背伸功能的影响[J]. 解放军医学院学报, 2020, 41(6):573-578.
|
|
GE H X, XIAO H Y, CHEN X D, et al. Effect of rehabilitation training on ankle dorsiflexion function after stroke: motion control and feedback training versus traditional manual therapy[J]. Acad J Chin PLA Med School, 2020, 41(6):573-578.
|
[8] |
CHALARD A, BELLE M, MONTANÉ E, et al. Impact of the EMG normalization method on muscle activation and the antagonist-agonist co-contraction index during active elbow extension: Practical implications for post-stroke subjects[J]. J Electromyogr Kinesiol, 2020, 51:102403.
doi: 10.1016/j.jelekin.2020.102403
|
[9] |
张肃, 郭峰. 前臂指深屈肌渐进性疲劳过程中EEG与sEMG相干性变化的特征[J]. 北京体育大学学报, 2016, 39(4):66-71.
|
|
ZHANG S, GUO F. Changes of EEG-sEMG coherence in exercise-induced fatigue of flexor digitorum profound muscles[J]. J Beijing Sport Univ, 2016, 39(4):66-71.
|
[10] |
LIU J, SHENG Y, LIU H. Corticomuscular coherence and its applications: a review[J]. Front Hum Neurosci, 2019, 20:13-100.
|
[11] |
PROUDFOOT M, EDE F V, QUINN A, et al. Impaired corticomuscular and interhemispheric cortical beta oscillation coupling in amyotrophic lateral sclerosis[J]. Clin Neurophysiol, 2018, 129(7):1479-1489.
doi: 10.1016/j.clinph.2018.03.019
|
[12] |
CHEN X, XIE P, ZHANG Y, et al. Abnormal functional corticomuscular coupling after stroke[J]. Neuroimage Clin, 2018, 19:147-159.
doi: 10.1016/j.nicl.2018.04.004
|
[13] |
CARR J C, YE X. Strength and electromyographic responses of upper and lower limbs during maximal intermittent contractions in males and females[J]. [Online ahead of print]. J Strength Cond Res, 2020. doi: 10.1519/JSC.00000000000035 80.
doi: 10.1519/JSC.00000000000035 80
|
[14] |
HINKS A, HESS A, DEBENHAM M I B, et al. Power loss is attenuated following a second bout of high-intensity eccentric contractions due to the repeated bout effect's protection of rate of torque and velocity development[J]. Appl Physiol Nutr Metab, 2021, 46(5):461-472.
doi: 10.1139/apnm-2020-0641
|
[15] |
郭峰. 运动性肌肉疲劳过程中大脑运动皮质区运动相关电位变化[J]. 体育科学, 2015(4):42-51.
|
|
GUO F. Changes of movement-related cortical potentials in motor cortex areas during exercise-induced muscle fatigue[J]. Chin Sport Sci, 2015(4):42-51.
|
[16] |
GUO F, ZHANG T Y, NICOLAS J H, et al. Brain source imaging based on movement-related cortical potentials induced by fatigue during self-paced handgrip contractions[J]. Neuroreport, 2020, 31(4):300-304.
doi: 10.1097/WNR.0000000000001395
|
[17] |
廖志平, 李建华, 魏爽. 脑卒中患者桥式运动下竖脊肌与多裂肌表面肌电图信号特征研究[J]. 中国康复医学杂志, 2016, 31(2):189-193.
|
|
LIAO Z P, LI J H, WEI S. A study on the characteristics of surface electromyography of erector spine muscle and multifidus muscle during bridge movement in stroke patients[J]. Chin J Rehabil Med, 2016, 31(2):189-193.
|
[18] |
CHUANG L L, CHEN Y L, CHEN C C, et al. Effect of EMG-triggered neuromuscular electrical stimulation with bilateral arm training on hemiplegic shoulder pain and arm function after stroke: a randomized controlled trial[J]. J Neuroeng Rehabil, 2017, 14(1):122-126.
doi: 10.1186/s12984-017-0332-0
|
[19] |
VON TSCHARNER V, ULLRICH M, MOHR M, et al. Beta, gamma band, and high-frequency coherence of EMGs of vasti muscles caused by clustering of motor units[J]. Exp Brain Res, 2018, 236(11):3065-3075.
doi: 10.1007/s00221-018-5356-6
|
[20] |
GUO Z, QIAN Q, WONG K, et al. Altered corticomuscular coherence (CMCoh) pattern in the upper limb during finger movements after stroke[J]. Front Neurol, 2020, 11:410-416.
doi: 10.3389/fneur.2020.00410
|
[21] |
LARSEN L H, ZIBRANDTSEN I C, WIENECKE T, et al. Corticomuscular coherence in the acute and subacute phase after stroke[J]. Clin Neurophysiol, 2017, 128:2217-2226.
doi: 10.1016/j.clinph.2017.08.033
|
[22] |
RUIZ-GONZALEZ Y, VELÁZQUEZ-PÉREZ L, RODRÍGUEZ-LABRADA R, et al. EMG rectification is detrimental for identifying abnormalities in corticomuscular and intermuscular coherence in spinocerebellar ataxia type 2[J]. Cerebellum, 2020, 19(5):665-671.
doi: 10.1007/s12311-020-01149-z
|