《中国康复理论与实践》 ›› 2021, Vol. 27 ›› Issue (9): 1072-1077.doi: 10.3969/j.issn.1006-9771.2021.09.011

• 临床研究 • 上一篇    下一篇

血管性认知障碍早期预测机器学习模型的构建

张倩1,2,卞敏洁1,2,何琴1,2,黄东锋1,2()   

  1. 1.中山大学附属第七医院康复医学科,广东深圳市 518000
    2.广东省康复医学与临床转化工程技术研究中心,广东广州市 510000
  • 收稿日期:2021-05-18 修回日期:2021-08-06 出版日期:2021-09-25 发布日期:2021-10-09
  • 通讯作者: 黄东锋 E-mail:Huangdf_sysu@163.com
  • 作者简介:张倩(1989-),女,汉族,内蒙古包头市人,硕士,医师,主要研究方向:神经康复。
  • 基金资助:
    中山大学临床医学研究5010计划项目(2014001)

Machine Learning Models for Early Prediction of Vascular Cognitive Impairment

ZHANG Qian1,2,BIAN Min-jie1,2,HE Qin1,2,HUANG Dong-feng1,2()   

  1. 1. Department of Rehabilitation Medicine, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518000, China
    2. Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, Guangzhou, Guangdong 510000, China
  • Received:2021-05-18 Revised:2021-08-06 Published:2021-09-25 Online:2021-10-09
  • Contact: HUANG Dong-feng E-mail:Huangdf_sysu@163.com
  • Supported by:
    Sun Yat-sen University Clinical Medicine Reseach Plan 5010(2014001)

摘要:

目的 探索以血管性高危因素构建的机器学习模型早期预测血管性认知障碍的预测性能。方法 2020年4月至9月,收集本院住院患者及陪护人员70例的人口学资料、血管性高危因素,行蒙特利尔认知评估量表(MoCA)评估,根据评估结果将受试者分为正常组、血管性轻度认知障碍(VaMCI)组和痴呆组;单因素方差分析筛选组间存在显著性差异的血管性高危因素,采用支持向量机(SVM)和极限学习机(ELM)构建预测模型;采用接受者操作特征曲线比较两种模型的预测性能。结果 根据MoCA评估结果,正常组32例,VaMCI组23例,痴呆组15例;三组间收缩压、空腹血糖、总胆固醇、低密度脂蛋白、血尿酸有显著性差异(F > 3.318, P < 0.05);SVM模型预测VaMCI的曲线下面积最高,为0.911 (P < 0.01),SVM模型优于ELM模型。结论 基于血管性高危因素构建的SVM预测模型优于ELM模型。

关键词: 血管性认知障碍, 支持向量机, 极限学习机, 机器学习, 预测模型

Abstract:

Objective To explore the predictive performance of machine learning model based on vascular risk factors in early prediction of vascular cognitive impairment.Methods From April to September, 2020, 70 subjects were enrolled and collected information of the demographics and vascular risk factors. They were assessed with Montreal Cognitive Assessment (MoCA), and then divided into normal group, vascular mild cognitive impairment (VaMCI) group and dementia group. The differences of vascular risk factors among the three groups were detected with one-way ANOVA, and the significant factors were selected to establish predictive models with support vector machine (SVM) and extreme learning machine (ELM). The predictive performance of two models was compared with Receiver Operating Characteristic Curve.Results There were 32 cases in the normal group, 23 in VaMCI group and 15 in dementia group. Systolic blood pressure, fasting blood glucose, total cholesterol, low density lipoprotein and blood uric acid were significantly different among the three groups (F > 3.318, P < 0.05). The area under curve was the most (0.911) in SVM model predicting for VaMCI (P < 0.01), and the predictive efficacy was better for SVM model.Conclusion SVM predictive model based on vascular risk factors may be more effective for predicting VaMCI.

Key words: vascular cognitive impairment, support vector machines, extreme learning machines, machine learning, predictive model