《中国康复理论与实践》 ›› 2021, Vol. 27 ›› Issue (9): 1072-1077.doi: 10.3969/j.issn.1006-9771.2021.09.011
收稿日期:
2021-05-18
修回日期:
2021-08-06
出版日期:
2021-09-25
发布日期:
2021-10-09
通讯作者:
黄东锋
E-mail:Huangdf_sysu@163.com
作者简介:
张倩(1989-),女,汉族,内蒙古包头市人,硕士,医师,主要研究方向:神经康复。
基金资助:
ZHANG Qian1,2,BIAN Min-jie1,2,HE Qin1,2,HUANG Dong-feng1,2()
Received:
2021-05-18
Revised:
2021-08-06
Published:
2021-09-25
Online:
2021-10-09
Contact:
HUANG Dong-feng
E-mail:Huangdf_sysu@163.com
Supported by:
摘要:
目的 探索以血管性高危因素构建的机器学习模型早期预测血管性认知障碍的预测性能。方法 2020年4月至9月,收集本院住院患者及陪护人员70例的人口学资料、血管性高危因素,行蒙特利尔认知评估量表(MoCA)评估,根据评估结果将受试者分为正常组、血管性轻度认知障碍(VaMCI)组和痴呆组;单因素方差分析筛选组间存在显著性差异的血管性高危因素,采用支持向量机(SVM)和极限学习机(ELM)构建预测模型;采用接受者操作特征曲线比较两种模型的预测性能。结果 根据MoCA评估结果,正常组32例,VaMCI组23例,痴呆组15例;三组间收缩压、空腹血糖、总胆固醇、低密度脂蛋白、血尿酸有显著性差异(F > 3.318, P < 0.05);SVM模型预测VaMCI的曲线下面积最高,为0.911 (P < 0.01),SVM模型优于ELM模型。结论 基于血管性高危因素构建的SVM预测模型优于ELM模型。
张倩,卞敏洁,何琴,黄东锋. 血管性认知障碍早期预测机器学习模型的构建[J]. 《中国康复理论与实践》, 2021, 27(9): 1072-1077.
ZHANG Qian,BIAN Min-jie,HE Qin,HUANG Dong-feng. Machine Learning Models for Early Prediction of Vascular Cognitive Impairment[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2021, 27(9): 1072-1077.
表1
各组间一般资料比较"
变量 | 正常组 (n = 32) | VaMCI组 (n = 23) | 痴呆组 (n = 15) | χ2/F值a | P值a | χ2/t值b | P值b | χ2/t值c | P值c |
---|---|---|---|---|---|---|---|---|---|
性别(男/女, n) | 16/16 | 12/11 | 8/7 | 0.053 | 0.979 | ||||
年龄(岁) | 34.9±2.2 | 53.9±2.7 | 59.7±3.6 | 24.310 | < 0.001 | 5.277 | < 0.001 | 1.282 | 0.210 |
脑梗死(男/女, n) | 0 | 5/6 | 6/4 | 0.444 | 0.505 | ||||
脑出血(男/女, n) | 0 | 2/2 | 2/3 | 0.090 | 0.764 | ||||
非卒中(男/女, n) | 16/16 | 5/3 | 0 | 0.401 | 0.527 | ||||
教育年限(年) | 13.6±0.7 | 9.4±0.9 | 10.1±1.0 | 7.965 | < 0.001 | 3.631 | < 0.001 | 0.519 | 0.608 |
身高(m) | 1.6±0.01 | 1.6±0.02 | 1.7±0.02 | 0.453 | 0.638 | ||||
体质量(kg) | 62.5±2.4 | 65.1±2.6 | 64.6±1.8 | 0.348 | 0.708 | ||||
BMI (kg/m2) | 23.4±0.7 | 24.4±0.7 | 23.7±0.7 | 0.456 | 0.636 |
表2
各组MoCA评分比较"
项目 | 正常组 (n = 32) | VaMCI组 (n = 23) | 痴呆组 (n = 15) | F值a | P值a | t值b | P值b | t值c | P值c |
---|---|---|---|---|---|---|---|---|---|
总分 | 27.5±0.4 | 21.8±0.3 | 13.5±0.9 | 150.600 | < 0.001 | 9.071 | < 0.001 | 8.481 | < 0.001 |
视空间与执行功能 | 4.6±0.1 | 3.8±0.3 | 1.6±0.3 | 41.430 | < 0.001 | 2.720 | 0.010 | 4.783 | < 0.001 |
命名功能 | 3.0±0.0 | 2.9±0.1 | 2.3±0.2 | 16.140 | < 0.001 | 1.335 | 0.189 | 3.199 | 0.003 |
注意功能 | 6.0±0.0 | 4.4±0.2 | 2.8±0.3 | 90.480 | < 0.001 | 10.040 | < 0.001 | 4.298 | < 0.001 |
语言功能 | 2.5±0.1 | 1.8±0.2 | 0.9±0.2 | 17.630 | < 0.001 | 2.857 | 0.007 | 2.725 | 0.011 |
抽象功能 | 1.4±0.1 | 0.9±0.2 | 0.5±0.2 | 8.405 | < 0.001 | 2.408 | 0.020 | 1.394 | 0.174 |
延迟回忆功能 | 3.8±0.2 | 2.2±0.3 | 0.5±0.3 | 41.230 | <0.001 | 4.180 | < 0.001 | 4.365 | < 0.001 |
定向功能 | 5.9±0.1 | 4.8±0.2 | 4.1±0.4 | 16.140 | < 0.001 | 5.746 | < 0.001 | 1.383 | 0.1773 |
表3
各组血管性高危因素比较"
因素 | 正常组 (n = 32) | VaMCI组 (n = 23) | 痴呆组 (n = 15) | F值a | P值a | t值b | P值b | t值c | P值c |
---|---|---|---|---|---|---|---|---|---|
收缩压(mmHg) | 122.7±2.0 | 142.2±4.1 | 133.4±2.8 | 12.580 | < 0.001 | 4.737 | < 0.001 | 1.736 | 0.093 |
舒张压(mmHg) | 77.1±1.4 | 80.6±1.4 | 78.4±1.6 | 1.333 | 0.272 | 1.588 | 0.112 | 1.041 | 0.306 |
空腹血糖(mmol/L) | 5.2±0.2 | 6.5±0.3 | 6.2±0.4 | 8.925 | < 0.001 | 4.488 | < 0.001 | 0.743 | 0.464 |
总胆固醇(mmol/L) | 4.1±0.2 | 4.8±0.3 | 4.135±0.2603 | 3.318 | 0.044 | 2.489 | 0.017 | 1.921 | 0.065 |
低密度脂蛋白(mmol/L) | 3.1±0.1 | 3.3±0.3 | 2.3±0.2 | 6.644 | 0.003 | 0.786 | 0.436 | 2.846 | 0.008 |
血尿酸(μmol/L) | 363.5±14.4 | 381.9±25.6 | 488.2±17.1 | 11.900 | < 0.001 | 0.677 | 0.502 | 3.404 | 0.002 |
[1] |
CAMPBELL B C V, DE SILVA D A, MACLEOD M R, et al. Ischaemic stroke[J]. Nat Rev Dis Primers, 2019, 5(1):70.
doi: 10.1038/s41572-019-0118-8 |
[2] | KALARIA R N, AKINYEMI R, IHARA M. Stroke injury, cognitive impairment and vascular dementia[J]. Biochim Biophys Acta, 2016, 1862(5):915-925. |
[3] |
IADECOLA C, DUERING M, HACHINSKI V, et al. Vascular Cognitive Impairment and Dementia: JACC Scientific Expert Panel[J]. J Am Coll Cardiol, 2019, 73(25):3326-3344.
doi: 10.1016/j.jacc.2019.04.034 |
[4] |
SACHDEV P S, BLACKER D, BLAZER D G, et al. Classifying neurocognitive disorders: the DSM-5 approach[J]. Nat Rev Neurol, 2014, 10(11):634-642.
doi: 10.1038/nrneurol.2014.181 |
[5] |
SKROBOT O A, BLACK S E, CHEN C, et al. Progress toward standardized diagnosis of vascular cognitive impairment: Guidelines from the Vascular Impairment of Cognition Classification Consensus Study[J]. Alzheimers Dement, 2018, 14(3):280-292.
doi: 10.1016/j.jalz.2017.09.007 |
[6] |
BARTHELS D, DAS H. Current advances in ischemic stroke research and therapies[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(4):165260.
doi: 10.1016/j.bbadis.2018.09.012 |
[7] |
YAO Q, ZHANG J, YAN K, et al. Development and validation of a 2-year new-onset stroke risk prediction model for people over age 45 in China[J]. Medicine (Baltimore), 2020, 99(41):e22680.
doi: 10.1097/MD.0000000000022680 |
[8] |
GORELICK P B, SCUTERI A, BLACK S E, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association[J]. Stroke, 2011, 42(9):2672-2713.
doi: 10.1161/STR.0b013e3182299496 |
[9] |
DICHGANS M, ZIETEMANN V. Prevention of vascular cognitive impairment[J]. Stroke, 2012, 43(11):3137-3146.
doi: 10.1161/STROKEAHA.112.651778 |
[10] |
PALTA P, SCHNEIDER A L, BIESSELS G J, et al. Magnitude of cognitive dysfunction in adults with type 2 diabetes: a meta-analysis of six cognitive domains and the most frequently reported neuropsychological tests within domains[J]. J Int Neuropsychol Soc, 2014, 20(3):278-291.
doi: 10.1017/S1355617713001483 |
[11] |
YANG M, WILLIAMSON J. Blood pressure and statin effects on cognition: a review[J]. Curr Hypertens Rep, 2019, 21(9):70.
doi: 10.1007/s11906-019-0973-4 |
[12] |
YANG Z, WANG H, EDWARDS D, et al. Association of blood lipids, atherosclerosis and statin use with dementia and cognitive impairment after stroke: a systematic review and meta-analysis[J]. Ageing Res Rev, 2020, 57:100962.
doi: 10.1016/j.arr.2019.100962 |
[13] | 黄菲芸, 王艳红, 李娟娟, 等. 蒙特利尔认知评估量表在中国中老年人群筛查轻度认知功能障碍中的截断值的系统评价[J]. 中国循证医学杂志, 2017, 17(4):450-457. |
HUANG F Y, WANG Y H, LI J J, et al. Diagnostic value of montreal cognitive assessment for mild cognitive impairment in Chinese middle-aged adults: a meta-analysis[J]. Chin J Evid Based Med, 2017, 17(4):450-457. | |
[14] | 王伊龙, 韩尚容, 曹勇, 等. 中国脑血管病临床管理指南(节选版):脑血管病高危人群管理[J]. 中国卒中杂志, 2019, 14(7):700-708. |
WANG Y L, HAN S R, CAO Y, et al. Chin J Stroke, 2019, 14(7):700-708. | |
[15] |
KAMAL H, LOPEZ V, SHETH S A. Machine learning in acute ischemic stroke neuroimaging[J]. Front Neurol, 2018, 9:945.
doi: 10.3389/fneur.2018.00945 |
[16] |
SIRSAT M S, FERMÉ E, CÂMARA J. Machine learning for brain stroke: a review[J]. J Stroke Cerebrovasc Dis, 2020, 29(10):105162.
doi: 10.1016/j.jstrokecerebrovasdis.2020.105162 |
[17] |
KISS T, BALASUBRAMANIAN P, VALCARCEL-ARES M N, et al. Nicotinamide mononucleotide (NMN) treatment attenuates oxidative stress and rescues angiogenic capacity in aged cerebromicrovascular endothelial cells: a potential mechanism for the prevention of vascular cognitive impairment[J]. Geroscience, 2019, 41(5):619-630.
doi: 10.1007/s11357-019-00074-2 |
[18] |
GREGORY M A, MANUEL-APOLINAR L, SÁNCHEZ-GARCIA S, et al. Soluble intercellular adhesion molecule-1 (sICAM-1) as a biomarker of vascular cognitive impairment in older adults[J]. Dement Geriatr Cogn Disord, 2019, 47(4-6):243-253.
doi: 10.1159/000500068 |
[19] |
ARMSTRONG N M, BANGEN K J, AU R, et al. Associations between midlife (but not late-life) elevated coronary heart disease risk and lower cognitive performance: results from the Framingham Offspring Study[J]. Am J Epidemiol, 2019, 188(12):2175-2187.
doi: 10.1093/aje/kwz210 |
[20] |
BANERJEE G, CHAN E, AMBLER G, et al. Effect of small-vessel disease on cognitive trajectory after atrial fibrillation-related ischaemic stroke or TIA[J]. J Neurol, 2019, 266(5):1250-1259.
doi: 10.1007/s00415-019-09256-6 |
[21] | QIAO M, CHEN C, LIANG Y, et al. The influence of serum uric acid level on Alzheimer's disease: a narrative review[J]. Biomed Res Int, 2021, 2021:5525710. |
[22] | 姚辉, 钱园园, 刘金颖, 等. 血管性认知障碍的治疗进展[J]. 医学综述, 2019, 25(13):2617-2621. |
YAO H, QIAN Y Y, LIU J Y, et al. Progress in treatment of vascular cognitive impairment[J]. Med Recapitulate, 2019, 25(13):2617-2621. | |
[23] | 王凌雪, 李双阳, 梁岚, 等. 血管性认知障碍的中西医治疗进展[J]. 实用中医内科杂志, 2020, 34(3):90-94. |
WANG L X, LI S Y, LIANG L, et al. Progress in treatment of vascular cognitive impairment with traditional Chinese and western medicine[J]. J Prac Tradit Chin Inter Med, 2020, 34(3):90-94. | |
[24] | PILIPOVICH A A, VOROB'EVA O V. [Mild cognitive impairment: modern aspects of diagnostics and therapy][J]. [in Russian]. Zh Nevrol Psikhiatr Im S S Korsakova, 2020, 120(11):124-130. |
[25] |
JIA L, QUAN M, FU Y, et al. Dementia in China: epidemiology, clinical management, and research advances[J]. Lancet Neurol, 2020, 19(1):81-92.
doi: 10.1016/S1474-4422(19)30290-X |
[26] | GHOLAMNEZHAD Z, BOSKABADY M H, JAHANGIRI Z. Exercise and dementia[J]. Adv Exp Med Biol, 2020, 1228:303-315. |
[27] |
DEMURTAS J, SCHOENE D, TORBAHN G, et al. Physical activity and exercise in mild cognitive impairment and dementia: an umbrella review of intervention and observational studies[J]. J Am Med Dir Assoc, 2020, 21(10):1415-1422, e6.
doi: 10.1016/j.jamda.2020.08.031 |
[28] | JI S, DUAN J, HOU X, et al. The role of acupuncture improving cognitive deficits due to Alzheimer's disease or vascular diseases through regulating neuroplasticity[J]. Neural Plast, 2021, 2021:8868447. |
[29] |
DJABELKHIR L, WU Y H, VIDAL J S, et al. Computerized cognitive stimulation and engagement programs in older adults with mild cognitive impairment: comparing feasibility, acceptability, and cognitive and psychosocial effects[J]. Clin Interv Aging, 2017, 12:1967-1975.
doi: 10.2147/CIA |
[30] | GRAFF-RADFORD J. Vascular cognitive impairment[J]. Continuum (Minneap Minn), 2019, 25(1):147-164. |
[31] | HE J, ZHAO C, LIU W, et al. Neurochemical changes in the hippocampus and prefrontal cortex associated with electroacupuncture for learning and memory impairment[J]. Int J Mol Med, 2018, 41(2):709-716. |
[32] |
HARVEY P D. Domains of cognition and their assessment[J]. Dialogues Clin Neurosci, 2019, 21(3):227-237.
doi: 10.31887/DCNS |
[33] |
AL-AIDROOS N, SAID C P, TURK-BROWNE N B. Top-down attention switches coupling between low-level and high-level areas of human visual cortex[J]. Proc Natl Acad Sci U S A, 2012, 109(36):14675-14680.
doi: 10.1073/pnas.1202095109 |
[34] |
VAN DER FLIER W M, SKOOG I, SCHNEIDER J A, et al. Vascular cognitive impairment[J]. Nat Rev Dis Primers, 2018, 4:18003.
doi: 10.1038/nrdp.2018.3 |
[35] | XIONG L, REIJMER Y D, CHARIDIMOU A, et al. Intracerebral hemorrhage and cognitive impairment[J]. Biochim Biophys Acta, 2016, 1862(5):939-944. |
[36] | LO COCO D, LOPEZ G, CORRAO S. Cognitive impairment and stroke in elderly patients[J]. Vasc Health Risk Manag, 2016, 12:105-116. |
[37] |
PARK Y H, JANG J W, PARK S Y, et al. Executive function as a strong predictor of recovery from disability in patients with acute stroke: a preliminary study[J]. J Stroke Cerebrovasc Dis, 2015, 24(3):554-561.
doi: 10.1016/j.jstrokecerebrovasdis.2014.09.033 |
[1] | 朱旭,刘静,董泽萍,仇大伟. 基于表面肌电图手势动作意图识别的系统综述[J]. 《中国康复理论与实践》, 2022, 28(9): 1032-1038. |
[2] | 张博超,杨朝,郭立泉,陈静,熊大曦. 基于机器学习的慢性阻塞性肺疾病急性加重预测模型的研究[J]. 《中国康复理论与实践》, 2022, 28(6): 678-683. |
[3] | 王博,袁永学,张庆苏. 非经口进食吞咽障碍脑卒中患者预后的相关因素及预测模型[J]. 《中国康复理论与实践》, 2022, 28(4): 453-460. |
[4] | 俞快,张利,叶祥明. 慢性意识障碍患者结局预测模型的系统综述[J]. 《中国康复理论与实践》, 2022, 28(2): 190-198. |
[5] | 丁妍怡,张胜行,刘雨露,余燕,杨敏光,梁胜祥,柳维林,陶静. 电针对血管性认知障碍大鼠脑功能局部一致性的效果[J]. 《中国康复理论与实践》, 2022, 28(1): 55-61. |
[6] | 蔡亚飞, 洪毅, 王方永. 脊髓损伤神经功能变化随访与预测模型[J]. 《中国康复理论与实践》, 2019, 25(10): 1120-1124. |
[7] | 崔尧, 丛芳, 李建军, 高峰, 杜良杰, 杨明亮. 成年脊髓损伤患者功能结局的预测模型研究[J]. 《中国康复理论与实践》, 2019, 25(10): 1125-1132. |
[8] | 张文冉, 王正则, 许晓丹, 张丽莹, 田沈. 血管性认知障碍脑CT灌注成像脑血流特点[J]. 《中国康复理论与实践》, 2018, 24(8): 942-949. |
[9] | 李静, 刘阳, 李晓芳, 代瑞廷. 愉快家庭康复对血管性认知障碍患者的效果[J]. 《中国康复理论与实践》, 2017, 23(3): 263-265. |
[10] | 张华a;王昊b;李多多b;贾宝林b;谭中建c;陈红b. 颈椎病慢性疼痛患者的默认网络研究[J]. 《中国康复理论与实践》, 2015, 21(01): 69-073. |
[11] | 王安睿;费树岷. 粗糙集和支持向量机应用于帕金森病辅助诊断[J]. 《中国康复理论与实践》, 2009, 15(11): 1086-1088. |
[12] | 周爱红;贾建平;闵保权 . 血管性认知障碍的神经心理学特征及存在的问题 [J]. 《中国康复理论与实践》, 2008, 14(03): 214-216. |
[13] | 杜万良 综述;王荫华 审校. 血管性认知障碍 [J]. 《中国康复理论与实践》, 2004, 10(04): 238-240. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|