[1] |
YÜCEL M A, SELB J J, HUPPERT T J, et al. Functional near infrared spectroscopy: enabling routine functional brain imaging[J]. Curr Opin Biomed Eng, 2017, 4:78-86.
|
[2] |
CHEN W L, WAGNER J, HEUGEL N, et al. Functional near-infrared spectroscopy and its clinical application in the field of neuroscience: advances and future directions[J]. Front Neurosci, 2020, 14:724
doi: 10.3389/fnins.2020.00724
|
[3] |
PENG K, NGUYEN D K, TAYAH T, et al. fNIRS-EEG study of focal interictal epileptiform discharges[J]. Epilepsy Res, 2014, 108(3):491-505.
doi: 10.1016/j.eplepsyres.2013.12.011
|
[4] |
MAHMOUDZADEH M, WALLOIS F, TIR M, et al. Cortical hemodynamic mapping of subthalamic nucleus deep brain stimulation in Parkinsonian patients, using high-density functional near-infrared spectroscopy[J]. PLoS One, 2021, 16(1): e0245188.
|
[5] |
FERRARI M, QUARESIMA V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application[J]. Neuroimage, 2012, 63(2):921-935.
doi: 10.1016/j.neuroimage.2012.03.049
|
[6] |
DIELER A C, TUPAK S V, FALLGATTER A J. Functional near-infrared spectroscopy for the assessment of speech related tasks[J]. Brain Lang, 2012, 121(2):90-109.
doi: 10.1016/j.bandl.2011.03.005
|
[7] |
MIHARA M, MIYAI I. Review of functional near-infrared spectroscopy in neurorehabilitation[J]. Neurophotonics, 2016, 3(3):031414.
doi: 10.1117/1.NPh.3.3.031414
|
[8] |
SZAMEITAT A J, SHEN S, CONFORTO A, et al. Cortical activation during executed, imagined, observed, and passive wrist movements in healthy volunteers and stroke patients[J]. Neuroimage, 2012, 62(1):266-280.
doi: 10.1016/j.neuroimage.2012.05.009
|
[9] |
蔡伟森, 吴毅, 吴军发, 等. 健康成年人手部主动及被动运动时大脑功能区的功能性磁共振成像研究[J]. 中华物理医学与康复杂志, 2011, 33(1):20-24.
|
|
CAI W S, WU Y, WU J F, et al. Functional magnetic resonance imaging of active and passive hand movement[J]. Chin J Phys Med Rehabil, 2011, 33(1):20-24.
|
[10] |
LEFF D R, ORIHUELA-ESPINA F, ELWELL C E, et al. Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies[J]. Neuroimage, 2011, 54(4):2922-2936.
doi: 10.1016/j.neuroimage.2010.10.058
|
[11] |
OLDFIELD R C. The assessment and analysis of handedness: the Edinburgh inventory[J]. Neuropsychologia, 1971, 9(1):97-113.
doi: 10.1016/0028-3932(71)90067-4
|
[12] |
KLEM G H, LÜDERS H O, JASPER H H, et al. The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology[J]. Electroencephalogr Clin Neurophysiol Suppl, 1999, 52:3-6.
|
[13] |
TEO W P, GOODWILL A M, HENDY A M, et al. Sensory manipulation results in increased dorsolateral prefrontal cortex activation during static postural balance in sedentary older adults: an fNIRS study[J]. Brain Behav, 2018, 8(10):e01109.
doi: 10.1002/brb3.2018.8.issue-10
|
[14] |
TSUZUKI D, DAN I. Spatial registration for functional near-infrared spectroscopy: from channel position on the scalp to cortical location in individual and group analyses[J]. Neuroimage, 2014, 85(Pt 1):92-103.
doi: 10.1016/j.neuroimage.2013.07.025
|
[15] |
DELORME M, VERGOTTE G, PERREY S, et al. Time course of sensorimotor cortex reorganization during upper extremity task accompanying motor recovery early after stroke: an fNIRS study[J]. Restor Neurol Neurosci, 2019, 37(3):207-218.
|
[16] |
FRANCESCHINI M A, JOSEPH D K, HUPPERT T J, et al. Diffuse optical imaging of the whole head[J]. J Biomed Opt, 2006, 11(5):054007.
doi: 10.1117/1.2363365
|
[17] |
JULIEN C. The enigma of Mayer waves: facts and models[J]. Cardiovasc Res, 2006, 70(1):12-21.
doi: 10.1016/j.cardiores.2005.11.008
|
[18] |
SUN P P, TAN F L, ZHANG Z, et al. Feasibility of functional near-infrared spectroscopy (fNIRS) to investigate the mirror neuron system: an experimental study in a real-life situation[J]. Front Hum Neurosci, 2018, 12:86.
|
[19] |
AGBANGLA N F, AUDIFFREN M, ALBINET C T. Use of near-infrared spectroscopy in the investigation of brain activation during cognitive aging: a systematic review of an emerging area of research[J]. Ageing Res Rev, 2017, 38:52-66.
doi: 10.1016/j.arr.2017.07.003
|
[20] |
ISO N, MORIUCHI T, FUJIWARA K, et al. Hemodynamic signal changes during motor imagery task performance are associated with the degree of motor task learning[J]. Front Hum Neurosci, 2021, 15:603069.
doi: 10.3389/fnhum.2021.603069
|
[21] |
TURGUT D, GUOQIANG Y, BURNETT M G, et al. Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation[J]. Opt Lett, 2004, 29(15):1766-1768.
doi: 10.1364/OL.29.001766
|
[22] |
LEE S H, JIN S H, AN J. The difference in cortical activation pattern for complex motor skills: a functional near-infrared spectroscopy study[J]. Sci Rep, 2019, 9(1):14066.
doi: 10.1038/s41598-019-50644-9
|
[23] |
GERLOFF C, CORWELL B, CHEN R, et al. Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences[J]. Brain, 1997, 120(Pt 9):1587-1602.
doi: 10.1093/brain/120.9.1587
|
[24] |
KASHOU N H, GIACHERIO B M, NAHHAS R W, et al. Hand-grasping and finger tapping induced similar functional near-infrared spectroscopy cortical responses[J]. Neurophotonics, 2016, 3(2):025006.
doi: 10.1117/1.NPh.3.2.025006
|
[25] |
CARIUS D, ANDRÄ C, CLAUß M, et al. Hemodynamic response alteration as a function of task complexity and expertise: an fNIRS study in jugglers[J]. Front Hum Neurosci, 2016, 10:126.
doi: 10.3389/fpsyg.2019.00126
|
[26] |
BENDAHAN D, CHATEL B, JUE T. Comparative NMR and NIRS analysis of oxygen-dependent metabolism in exercising finger flexor muscles[J]. Am J Physiol Regul Integr Comp Physiol, 2017, 313(6):R740-R753.
doi: 10.1152/ajpregu.00203.2017
|
[27] |
BYUN K, HYODO K, SUWABE K, et al. Possible influences of exercise-intensity-dependent increases in non-cortical hemodynamic variables on NIRS-based neuroimaging analysis during cognitive tasks: technical note[J]. J Exerc Nutrition Biochem, 2014, 18(4):327-332.
doi: 10.5717/jenb.2014.18.4.327
|
[28] |
ISSARD C, GERVAIN J. Variability of the hemodynamic response in infants: influence of experimental design and stimulus complexity[J]. Dev Cogn Neurosci, 2018, 33:182-193.
doi: 10.1016/j.dcn.2018.01.009
|
[29] |
HOLPER L, WOLF M. Single-trial classification of motor imagery differing in task complexity: a functional near-infrared spectroscopy study[J]. J Neuroeng Rehabil, 2011, 8:34.
doi: 10.1186/1743-0003-8-34
|
[30] |
MIZUNO M, HIROYASU T, HIWA S. A functional NIRS study of brain functional networks induced by social time coordination[J]. Brain Sci, 2019, 9(2):43.
doi: 10.3390/brainsci9020043
|