[1] |
FRANK A O, DE SOUZA L H. Clinical features of children and adults with a muscular dystrophy using powered indoor/outdoor wheelchairs: disease features, comorbidities and complications of disability[J]. Disabil Rehabil, 2018, 40(9):1007-1013.
doi: 10.1080/09638288.2017.1292322
|
[2] |
CASEY J, MCKEOWN L, MCDONALD R, et al. Wheelchairs for children under 12 with physical impairments [J]. Cochrane Database Syst Rev, 2017, 2017(2): CD010154.
|
[3] |
BRAY N, KOLEHMAINEN N, MCANUFF J, et al. Powered mobility interventions for very young children with mobility limitations to aid participation and positive development: the EMPoWER evidence synjournal[J]. Health Technol Assess, 2020, 24(50):1-194.
|
[4] |
BEKTESHI S, KONINGS M, NICA I G, et al. Dystonia and choreoathetosis presence and severity in relation to powered wheelchair mobility performance in children and youth with dyskinetic cerebral palsy[J]. Eur J Paediatr Neurol, 2020, 29:118-127.
doi: 10.1016/j.ejpn.2020.08.002
|
[5] |
World Health Organization. Wheelchair Service Training Package-Inter-mediate Level[M]. Geneva: World Health Organization, 2013.
|
[6] |
钟磊, 朱图陵. 世界卫生组织轮椅中级服务及其对我国辅具服务的启示[J]. 中国康复理论与实践, 2016, 22(7):860-862.
|
|
ZHONG L, ZHU T L. World Health Organization Wheelchair Service-Intermediate Level: introduction and implication for assistive technology service in China[J]. Chin J Rehabil Theory Pract, 2016, 22(7):860-862.
|
[7] |
陈新民, 陈压安. 中国残疾儿童现状分析及对策研究[M]. 北京: 华夏出版社, 2008.
|
|
CHEN X M, CHEN Y A. The analysis and research on the status and countermeasures for the children with disabilities in China [M]. Beijing: Huaxia Press, 2008.
|
[8] |
KAYE H S, KANG T, LAPLANTE M P. Mobility Device Use in the United States [R]. Disabilty Statistics Report, 2000.
|
[9] |
熊妮娜, 王建文, 陈耀红, 等. 学龄期脑性瘫痪儿童康复、教育、辅具情况随访[J]. 中国康复理论与实践, 2017, 23(2):237-241.
|
|
XIONG N N, WANG J W, CHEN Y H, et al. Rehabilitation, education, and assistive devices utilization of school age children with cerebral palsy: a follow-up study[J]. Chin J Rehabil Theory Pract, 2017, 23(2):237-241.
|
[10] |
中国残疾人联合会. 2018年残疾人事业发展统计公报 [EB/OL]. (2019-03-27) [2020-02-10]. http://www.cdpf.org.cn/zcwj/zxwj/201903/t20190327_649544.shtml .
|
|
China Disabled Persons' Federation. Statistical communique on the development of the work for persons with disabilities in 2018 [EB/OL]. (2019-03-27) [2020-02-10]. http://www.cdpf.org.cn/zcwj/zxwj/201903/t20190327_649544.shtml .
|
[11] |
刘志红, 董理权, 戴东, 等. 痉挛型脑性瘫痪儿童轮椅适配情况的调查[J]. 中国康复医学杂志, 2019, 34(3):322-326.
|
|
LIU Z H, DONG L Q, DAI D, et al. The survey on the wheelchair appropriateness in children with spastic cerebral palsy[J]. Chin J Rehabil Med, 2019, 34(3):322-326.
|
[12] |
姜静远, 邱卓英, 王国祥, 等. 世界卫生组织国际健康分类家族在康复中系统应用的方案与路线图[J]. 中国康复理论与实践, 2020, 26(11):1241-1255.
|
|
JIANG J Y, QIU Z Y, WANG G X, et al. Systematic implementation of World Health Organization Family International Classifications in Rehabilitation: protocol and roadmap[J]. Chin J Rehabil Theory Pract, 2020, 26(11):1241-1255.
|
[13] |
JONES M A, MCEWEN I R, NEAS B R. Effects of power wheelchairs on the development and function of young children with severe motor impairments[J]. Pediatr Phys Ther, 2012, 24(2):131-140.
doi: 10.1097/PEP.0b013e31824c5fdc
|
[14] |
RISPIN K, WEE J. A paired outcomes study comparing two pediatric wheelchairs for low-resource settings: the regency pediatric wheelchair and a similarly sized wheelchair made in Kenya[J]. Assist Technol, 2014, 26(2):88-95.
doi: 10.1080/10400435.2013.837847
|
[15] |
CERES R, PONS J L, CALDERÓN L, et al. A robotic vehicle for disabled children. Providing assisted mobility with the PALMA project[J]. IEEE Eng Med Biol Mag, 2005, 24(6):55-63.
doi: 10.1109/MEMB.2005.1549731
|
[16] |
CIMOLIN V, AVELLIS M, PICCININI L, et al. Comparison of two pelvic positioning belt configurations in a pediatric wheelchair[J]. Assist Technol, 2013, 25(4):240-246.
doi: 10.1080/10400435.2013.778916
|
[17] |
RAMMER J R, KRZAK J J, SLAVENS B A, et al. Considering propulsion pattern in therapeutic outcomes for children who use manual wheelchairs[J]. Pediatr Phys Ther, 2019, 31(4):360-368.
doi: 10.1097/PEP.0000000000000649
|
[18] |
ZHANG J, JADAVJI Z, ZEWDIE E, et al. Evaluating if children can use simple brain computer interfaces[J]. Front Hum Neurosci, 2019, 13:24.
|
[19] |
WINKLER S L, ROMERO S, PRATHER E, et al. Innovative power wheelchair control interface: a proof-of-concept study[J]. Am J Occup Ther, 2016, 70(2):7002350010p1-5.
|
[20] |
BOTTOS M, BOLCATI C, SCIUTO L, et al. Powered wheelchairs and independence in young children with tetraplegia[J]. Dev Med Child Neurol, 2001, 43(11):769-777.
doi: 10.1111/dmcn.2001.43.issue-11
|
[21] |
MEISER M J, MCEWEN I R. Lightweight and ultralight wheelchairs: propulsion and preferences of two young children with spina bifida[J]. Pediatr Phys Ther, 2007, 19(3):245-253.
doi: 10.1097/PEP.0b013e318044e911
|
[22] |
ZONDERVAN D K, SECOLI R, DARLING A M, et al. Design and evaluation of the Kinect-Wheelchair Interface Controlled (KWIC) smart wheelchair for pediatric powered mobility training[J]. Assist Technol, 2015, 27(3):183-192.
doi: 10.1080/10400435.2015.1012607
|
[23] |
VORSTER N, EVANS K, MURPHY N, et al. Powered standing wheelchairs promote independence, health and community involvement in adolescents with Duchenne muscular dystrophy[J]. Neuromuscul Disord, 2019, 29(3):221-230.
doi: 10.1016/j.nmd.2019.01.010
|
[24] |
MCGARRY S, MOIR L, GIRDLER S. The smart wheelchair: is it an appropriate mobility training tool for children with physical disabilities?[J]. Disabil Rehabil Assist Technol, 2012, 7(5):372-380.
doi: 10.3109/17483107.2011.637283
|
[25] |
ALKHATEEB A M, DAHER N S, FORRESTER B J, et al. Effects of adjustments to wheelchair seat to back support angle on head, neck, and shoulder postures in subjects with cerebral palsy[J]. [ahead of print]. Assist Technol, 2019. doi: 10.1080/10400435.2019.1641167.
doi: 10.1080/10400435.2019.1641167
|
[26] |
BLUMENFELD O, BEN-PAZI H, ORNOY A, et al. Prevalence of cerebral palsy with Gross Motor Function Classification System levels IV and V in children in Israel: a cross-cultural comparison[J]. Childs Nerv Syst, 2020, 36(2):411-416.
doi: 10.1007/s00381-019-04262-5
|
[27] |
TEFFT D, GUERETTE P, FURUMASU J. Cognitive predictors of young children's readiness for powered mobility[J]. Dev Med Child Neurol, 1999, 41(10):665-670.
doi: 10.1111/j.1469-8749.1999.tb00520.x
|
[28] |
KREY C H, CALHOUN C L. Utilizing research in wheelchair and seating selection and configuration for children with injury/dysfunction of the spinal cord[J]. J Spinal Cord Med, 2004, 27(Suppl 1):S29-S37.
doi: 10.1080/10790268.2004.11753782
|
[29] |
庄建龙, 王玉明, 胡中华. 脊髓损伤患者轮椅的选择[J]. 中国康复理论与实践, 2015, 21(4):449-452.
|
|
ZHUANG J L, WANG Y M, HU Z H. Application of wheelchair for spinal cord injury (review)[J]. Chin J Rehabil Theory Pract, 2015, 21(4):449-452.
|
[30] |
韩志昕, 隋修武. 基于多源信息融合的肌电轮椅智能控制技术研究[J]. 现代制造工程, 2020(9):136-144.
|
|
HAN Z X, SUI X W. >Research on intelligent control technology of myoelectric wheelchair based on multi-source information fusion[J]. Mod Eng Manuf, 2020(9):136-144.
|
[31] |
张琦. 脑性瘫痪儿童坐位姿势控制障碍分析[J]. 中国康复理论与实践, 2012, 18(10):922-926.
|
|
ZHANG Q. The analysis of control disorder of sitting posture in children with cerebral palsy[J]. Chin J Rehabil Theory Pract, 2012, 18(10):922-926.
|