《中国康复理论与实践》 ›› 2021, Vol. 27 ›› Issue (8): 951-961.doi: 10.3969/j.issn.1006-9771.2021.08.010
收稿日期:
2019-07-25
修回日期:
2021-06-28
出版日期:
2021-08-25
发布日期:
2021-08-25
通讯作者:
张培珍
E-mail:zhpzh17@hotmail.com
作者简介:
张思渊(1993-),女,汉族,山西五寨县人,硕士,主要研究方向:运动康复与健康。|张培珍(1974-),女,汉族,山西原平市人,博士,教授,博士生导师,主要研究方向:运动与心血管健康、运动健身与运动处方、运动营养。
基金资助:
ZHANG Si-yuan1,2,ZHANG Pei-zhen1(),ZHOU Xing-long3
Received:
2019-07-25
Revised:
2021-06-28
Published:
2021-08-25
Online:
2021-08-25
Contact:
ZHANG Pei-zhen
E-mail:zhpzh17@hotmail.com
Supported by:
摘要:
目的 分析正常人斜方肌的激活特征,观察不同干预方式对斜方肌异常者激活模式恢复的作用。方法 2017年9月至10月,互联网招募肩关节正常人(正常组,n = 20)和肩关节不适者(观察组,n = 20),在无干预、上斜方肌(UT)静力牵拉、下斜方肌(LT)等长收缩和组合干预后,均完成直臂侧上举、坐姿划船和反向飞鸟动作。测试记录肌电信号的均方根值(RMS),计算最大自主收缩肌电百分比(MVE%),观察激活比例和激活时间。结果 无干预时,与对照组比较,观察组UT MVE%增加(P < 0.05),激活时间提前(P < 0.05);中斜方肌(MT)和LT MVE%降低(P < 0.05),激活时间延迟(P < 0.05);UT/LT和UT/MT增加(P < 0.05)。UT静力牵拉、LT等长收缩和组合训练后,两组不同肌肉MVE%、激活时间、激活比例在不同动作下均有不同程度改变(P < 0.05)。结论 斜方肌三束在不同动作中,激活程度与激活时间不同;在运动开始前进行UT静力牵拉和LT等长收缩可以改善肩关节不适者的斜方肌在运动中的激活模式,有利于肩关节发挥正常功能。
张思渊,张培珍,周兴龙. 不同干预方式对斜方肌在运动中激活模式的影响[J]. 《中国康复理论与实践》, 2021, 27(8): 951-961.
ZHANG Si-yuan,ZHANG Pei-zhen,ZHOU Xing-long. Effects of Different Interventions on Activation Mode of Trapezius Muscle during Exercise[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2021, 27(8): 951-961.
表2
斜方肌各束在直臂侧上举动作中的激活程度比较(%)"
组别 | n | 干预方式 | LT | MT | UT | F值 | P值 |
---|---|---|---|---|---|---|---|
正常组 | 20 | 无干预 | 33.8±14.1 | 30.9±10.1 | 46.8±10.4 | 0.760 | 0.472 |
UT静力牵拉 | 35.3±19.9 | 32.1±13.6 | 46.1±13.8 | 0.209 | 0.812 | ||
LT等长收缩 | 37.3±10.2d | 32.9±14.1 | 47.1±7.7 | 0.438 | 0.648 | ||
组合干预 | 36.7±14.8 | 34.6±13.2 | 47.1±14.1 | 0.227 | 0.798 | ||
观察组 | 20 | 无干预 | 28.1±14.4a,c | 18.6±13.3a,c | 57.5±11.4a | 2.266 | 0.017 |
UT静力牵拉 | 27.3±11.9b,c | 20.0±11.1c | 49.5±12.6d | 1.999 | 0.046 | ||
LT等长收缩 | 31.8±13.7c | 22.4±12.7c | 53.0±10.1 | 2.086 | 0.032 | ||
组合干预 | 30.9±14.0c | 23.4±10.2c | 50.0±7.6d | 2.017 | 0.037 |
表3
斜方肌各束在坐姿划船动作中的激活程度比较(%)"
组别 | n | 干预方式 | LT | MT | UT | F值 | P值 |
---|---|---|---|---|---|---|---|
正常组 | 20 | 无干预 | 44.4±15.8c | 40.6±19.6c | 25.3±9.9 | 2.141 | 0.016 |
UT静力牵拉 | 42.9±17.4c | 38.7±17.3 | 26.6±11.3 | 2.013 | 0.049 | ||
LT等长收缩 | 49.7±14.6c,d | 41.1±18.2c | 26.4±10.3 | 2.535 | 0.008 | ||
组合干预 | 48.8±12.7c,d | 47.5±12.6c,d | 27.4±8.6 | 2.794 | 0.004 | ||
观察组 | 20 | 无干预 | 25.6±10.0b | 30.5±12.6 | 34.7±12.5 | 0.149 | 0.861 |
UT静力牵拉 | 26.4±9.6a | 31.3±13.6 | 33.1±12.3 | 0.084 | 0.919 | ||
LT等长收缩 | 28.4±6.7a | 35.6±11.2 | 37.3±10.9a | 0.232 | 0.794 | ||
组合干预 | 27.4±9.9a | 33.7±11.8 | 31.4±13.6 | 0.072 | 0.930 |
表4
斜方肌各束在反向飞鸟动作中的激活程度比较(%)"
组别 | n | 干预方式 | LT | MT | UT | F值 | P值 |
---|---|---|---|---|---|---|---|
正常组 | 20 | 无干预 | 38.2±13.9 | 49.5±20.6 | 32.7±16.6 | 0.246 | 0.782 |
UT静力牵拉 | 41.1±15.5 | 54.2±19.2 | 32.2±14.4 | 0.450 | 0.639 | ||
LT等长收缩 | 45.6±21.3c | 53.2±23.9 | 35.2±14.1 | 0.200 | 0.819 | ||
组合干预 | 42.2±16.6 | 51.7±21.0 | 33.4±12.7 | 0.286 | 0.752 | ||
观察组 | 20 | 无干预 | 29.8±9.9a,b | 44.1±17.3 | 41.9±12.9 | 2.246 | 0.017 |
UT静力牵拉 | 31.7±17.2 | 47.0±18.4 | 42.0±20.8a | 0.171 | 0.843 | ||
LT等长收缩 | 37.0±18.8c,d | 49.1±16.8 | 43.4±19.8a | 0.107 | 0.899 | ||
组合干预 | 36.2±19.5 | 42.2±18.6 | 41.4±13.3 | 0.035 | 0.965 |
表5
斜方肌各束在直臂侧上举动作中的激活比例比较(%)"
组别 | n | 干预方式 | UT/LT | UT/MT | F值 | P值 |
---|---|---|---|---|---|---|
正常组 | 20 | 无干预 | 139.3±42.2 | 153.3±49.9 | 0.046 | 0.832 |
UT静力牵拉 | 131.4±58.0 | 143.7±57.1 | 0.023 | 0.881 | ||
LT等长收缩 | 127.0±48.3c | 146.8±45.4 | 0.089 | 0.767 | ||
组合干预 | 130.0±53.2 | 138.2±46.7c | 0.014 | 0.908 | ||
观察组 | 20 | 无干预 | 203.5±62.8b | 316.4±71.2b | 1.414 | 0.242 |
UT静力牵拉 | 181.4±40.4 | 245.2±69.3b,c | 0.633 | 0.431 | ||
LT等长收缩 | 171.9±54.3c | 240.9±55.1b,c | 0.796 | 0.378 | ||
组合干预 | 186.6±63.8a | 237.3±58.1b,c | 0.345 | 0.560 |
表6
斜方肌各束在坐姿划船动作中的激活比值比较(%)"
组别 | n | 干预方式 | UT/LT | UT/MT | F值 | P值 |
---|---|---|---|---|---|---|
正常组 | 20 | 无干预 | 56.8±25.7 | 62.5±31.2 | 0.019 | 0.889 |
UT静力牵拉 | 61.9±31.0 | 66.4±37.1 | 0.009 | 0.926 | ||
LT等长收缩 | 53.0±23.6 | 63.4±35.3 | 0.060 | 0.808 | ||
组合干预 | 56.2±25.1 | 57.4±22.1 | 0.001 | 0.972 | ||
观察组 | 20 | 无干预 | 146.0±58.1a | 113.3±46.9a | 0.192 | 0.664 |
UT静力牵拉 | 143.9±59.1a | 106.4±41.3a | 0.271 | 0.606 | ||
LT等长收缩 | 139.2±48.9a | 111.4±43.9a | 0.179 | 0.675 | ||
组合干预 | 144.8±41.6a | 103.9±38.1 | 0.526 | 0.473 |
表7
斜方肌各束在反向飞鸟动作中的激活比值比较(%)"
组别 | n | 干预方式 | UT/LT | UT/MT | F值 | P值 |
---|---|---|---|---|---|---|
正常组 | 20 | 无干预 | 128.9±31.9 | 65.3±20.0 | 1.644 | 0.099 |
UT静力牵拉 | 131.7±40.5 | 59.2±21.0b | 1.566 | 0.120 | ||
LT等长收缩 | 117.4±53.0b,c | 66.0±32.3 | 0.686 | 0.413 | ||
组合干预 | 121.7±47.0 | 64.7±19.0 | 1.264 | 0.268 | ||
观察组 | 20 | 无干预 | 151.7±54.4a | 93.1±37.5a | 0.787 | 0.381 |
UT静力牵拉 | 151.6±63.7a | 89.3±32.3 | 0.761 | 0.389 | ||
LT等长收缩 | 132.4±55.5b,c | 87.7±25.6 | 0.535 | 0.469 | ||
组合干预 | 136.6±47.2b | 97.1±19.7a | 0.596 | 0.445 |
表8
斜方肌各束在直臂侧上举动作中的激活时间比较(ms)"
组别 | n | 干预方式 | LT | MT | UT | F值 | P值 |
---|---|---|---|---|---|---|---|
正常组 | 20 | 无干预 | 631±303 | 420±224 | 467±307 | 0.156 | 0.856 |
UT静力牵拉 | 579±304 | 383±189 | 792±369b | 0.475 | 0.624 | ||
LT等长收缩 | 458±282 | 241±151 | 607±330 | 0.481 | 0.621 | ||
组合干预 | 496±310 | 340±207 | 506±248 | 0.129 | 0.879 | ||
观察组 | 20 | 无干预 | 811±477 | 556±346 | 280±148 | 0.573 | 0.567 |
UT静力牵拉 | 699±346 | 450±220 | 478±315 | 0.209 | 0.812 | ||
LT等长收缩 | 477±235a | 530±276 | 343±259 | 0.140 | 0.869 | ||
组合干预 | 501±294 | 425±179 | 397±240 | 0.049 | 0.952 |
表9
斜方肌各束在坐姿划船动作中的激活时间比较(ms)"
组别 | n | 干预方式 | LT | MT | UT | F值 | P值 |
---|---|---|---|---|---|---|---|
正常组 | 20 | 无干预 | 250±166b | 207±211b | 719±325 | 1.976 | 0.048 |
UT静力牵拉 | 199±93b | 189±91b | 832±298 | 2.397 | 0.045 | ||
LT等长收缩 | 105±76b | 157±84b | 798±308 | 2.428 | 0.035 | ||
组合干预 | 174±133b | 150±111b | 801±341 | 2.207 | 0.046 | ||
观察组 | 20 | 无干预 | 350±269 | 634±346a,b | 277±175a | 2.211 | 0.047 |
UT静力牵拉 | 250±128 | 532±282a | 484±276c | 0.397 | 0.674 | ||
LT等长收缩 | 200±92 | 345±228c | 398±161a | 0.365 | 0.696 | ||
组合干预 | 245±167 | 419±243a | 503±338c | 0.257 | 0.774 |
表1
0 斜方肌各束在反向飞鸟动作中的激活时间比较(ms)"
组别 | n | 干预方式 | LT | MT | UT | F值 | P值 |
---|---|---|---|---|---|---|---|
正常组 | 20 | 无干预 | 140±31b | 160±61b | 459±278 | 2.596 | 0.022 |
UT静力牵拉 | 127±66b | 112±50b | 659±341 | 2.041 | 0.038 | ||
LT等长收缩 | 119±48b | 67±29b | 505±237 | 1.983 | 0.047 | ||
组合干预 | 143±56b | 134±110b | 546±222 | 2.318 | 0.021 | ||
观察组 | 20 | 无干预 | 428±274a | 250±118 | 350±243 | 0.161 | 0.851 |
UT静力牵拉 | 311±143 | 158±66 | 422±214 | 0.747 | 0.479 | ||
LT等长收缩 | 198±123c | 77±64c | 423±139 | 1.576 | 0.099 | ||
组合干预 | 393±214 | 165±78 | 378±132 | 0.704 | 0.499 |
[1] |
SEIDI F, BAYATTORK M, MINOONEJAD H, et al. Comprehensive corrective exercise program improves alignment, muscle activation and movement pattern of men with upper crossed syndrome: randomized controlled trial[J]. Sci Rep, 2020, 10(1):20688.
doi: 10.1038/s41598-020-77571-4 |
[2] |
YIP C H, CHIU T T, POON A T. The relationship between head posture and severity and disability of patients with neck pain[J]. Man Ther, 2008, 13(2):148-154.
doi: 10.1016/j.math.2006.11.002 |
[3] |
CLAUS A P, HIDES J A, MOSELEY G L, et al. Thoracic and lumbar posture behaviour in sitting tasks and standing: progressing the biomechanics from observations to measurements[J]. Appl Ergon, 2016, 53(10):161-168.
doi: 10.1016/j.apergo.2015.09.006 |
[4] | AMBROSI D. Understanding the job of a dressmaker: with emphasis on the sitting posture[J]. Revbrassaúde Ocup, 2004, 29(109):11-19. |
[5] |
LI G, HASLEGRAVE C M, CORLETT E N. Factors affecting posture for machine sewing tasks: the need for changes in sewing machine design[J]. Appl Ergon, 1995, 26(1):35-46.
doi: 10.1016/0003-6870(94)00005-J |
[6] |
IJMKER S, HUYSMANS M A, BLATTER B M, et al. Should office workers spend fewer hours at their computer? A systematic review of the literature[J]. Occup Environ Med, 2007, 64(4):211-222.
doi: 10.1136/oem.2006.026468 |
[7] |
GRIEGEL-MORRIS P, LARSON K, MUELLER-KLAUS K, et al. Incidence of common postural abnormalities in the cervical, shoulder, and thoracic regions and their association with pain in two age groups of healthy subjects[J]. Phys Ther, 1992, 72(6):425-431.
doi: 10.1093/ptj/72.6.425 |
[8] |
YOO W G, PARK S Y. Effects of posture-related auditory cueing (PAC) program on muscles activities and kinematics of the neck and trunk during computer work[J]. Work, 2015, 50(2):187-191.
doi: 10.3233/WOR-131738 |
[9] |
BARRETT E, O'KEEFFE M, O'SULLIVAN K, et al. Is thoracic spine posture associated with shoulder pain, range of motion and function? A systematic review[J]. Man Ther, 2016, 26(5):38-46.
doi: 10.1016/j.math.2016.07.008 |
[10] | PAGE P. Shoulder muscle imbalance and subacromial impingement syndrome in overhead athletes[J]. Int J Sports Phys Ther, 2011, 6(1):51-58. |
[11] |
KIBLER W B, SCIASCIA A. Current concepts: scapular dyskinesis[J]. Br J Sports Med, 2010, 44(10):300-305.
doi: 10.1136/bjsm.2009.058834 |
[12] | 宋国强, 张东亮. 斜方肌的形态学分析及其肌力练习[J]. 南京体育学院学报(社会科学版), 2001, 15(1):13-15. |
SONG G Q, ZHANG D L. On morphologic analysis of trapezius and strength practice of muscle[J]. J Nanjing Ins Phys Educ (Soc Sci), 2001, 15(1):13-15. | |
[13] | 韦清, 朱俊平, 卓杰先, 等. 肌肉刺激仪对拳击运动员训练后斜方肌弹性和伸缩性恢复的影响研究[J]. 广州体育学院学报, 2015, 35(6):100-103. |
WEI Q, ZHU J P, ZHUO J X, et al. Impact of muscle stimulator on the recovery of elasticity and flexibility of boxers' cowl muscle after training[J]. J Guangzhou Sport Univ, 2015, 35(6):100-103. | |
[14] | 郭全清. 青年男子网球运动员主要动作的肌电分析与应用[D]. 北京: 北京体育大学, 2006. |
GUO Q Q. Electromyographic analysis and application of main movements of young male tennis players[D]. Beijing: Beijing Sport Univ, 2006. | |
[15] |
KIBLER W B, UHL T L, MADDUX J W, et al. Qualitative clinical evaluation of scapular dysfunction: a reliability study[J]. J Shoulder Elbow Surg, 2002, 11(6):550-556.
doi: 10.1067/mse.2002.126766 |
[16] |
PARK J Y, HWANG J T, KIM K M, et al. How to assess scapular dyskinesis precisely: 3-dimensional wing computer tomography: a new diagnostic modality[J]. J Shoulder Elbow Surg, 2013, 22(8):1084-1091.
doi: 10.1016/j.jse.2012.10.046 |
[17] | DE MEY K, DANNEELS L A, CAGNIE B, et al. Conscious correction of scapular orientation in overhead athletes performing selected shoulder rehabilitation exercises: the effect on trapezius muscle activation measured by surface electromyography[J]. J Orthop Sports Phys Ther, 2013, 43(1):3-10. |
[18] |
DAVID G, MAGAREY M E, JONES M A, et al. EMG and strength correlates of selected shoulder muscles during rotations of the glenohumeral joint[J]. Clin Biomech, 2000, 15(2):95-102.
doi: 10.1016/S0268-0033(99)00052-2 |
[19] |
COOLS A M, DEWITTE V, LANSZWEERT F, et al. Rehabilitation of scapular muscle balance: which exercises to prescribe?[J]. Am J Sports Med, 2007, 35(10):1744-1751.
doi: 10.1177/0363546507303560 |
[20] |
DE MEY K, CAGNIE B, DANNEELS L A, et al. Trapezius muscle timing during selected shoulder rehabilitation exercises[J]. J Orthop Sports Phys Ther, 2009, 39(10):743-752.
doi: 10.2519/jospt.2009.3089 |
[21] |
DE MEY K, DANNEELS L, CAGNIE B, et al. Scapular muscle rehabilitation exercises in overhead athletes with impingement symptoms: effect of a 6-week training program on muscle recruitment and functional outcome[J]. Am J Sports Med, 2012, 40(8):1906-1915.
doi: 10.1177/0363546512453297 |
[22] |
KRYGER A I, ANDERSEN J H, LASSEN C F, et al. Does computer use pose an occupational hazard for forearm pain; from the NUDATA study[J]. Occup Environ Med, 2003, 60(11):e14.
doi: 10.1136/oem.60.11.e14 |
[23] |
KAERGAARD A, ANDERSEN J H, RASMUSSEN K, et al. Identification of neck-shoulder disorders in a 1 year follow-up study. Validation of a questionnaire-based method[J]. Pain, 2000, 86(3):305-310.
doi: 10.1016/S0304-3959(00)00261-X |
[24] | KENDALL F, PROVANCE P, RODGERS M, et al. Muscles: Testing and Function, with Posture and Pain[M]. Philadelphia: Lippincott Williams Wilkins, 2013: 1689-1699. |
[25] | 朱学雷. 体能训练概论[M]. 上海: 上海三联书店, 2011: 245. |
ZHU X L. Essentials of Strength Training & Conditioning[M]. Shanghai: Shanghai Sanlian Bookstore, 2011: 245. | |
[26] |
ARLOTTA M, LOVASCO G, MCLEAN L. Selective recruitment of the lower fibers of the trapezius muscle[J]. J Electromyogr Kinesiol, 2011, 21(3):403-410.
doi: 10.1016/j.jelekin.2010.11.006 |
[27] | 王会宁. 汽车装配工人局部肌肉骨骼损伤及表面肌电特征研究[D]. 北京: 中国疾病预防控制中心, 2012. |
WANG H N. The study of the local musculoskeletal disorders and the surface electromyography characteristics during car assembly tasks[D]. Beijing: China Center for Disease Control and Prevention, 2012. | |
[28] | 王世娟, 张忠彬, 王生, 等. 表面肌电描记术在工作相关肌肉骨骼损伤研究中的应用[J]. 环境与职业医学, 2017, 34(9):812-816. |
WANG S J, ZHANG Z B, WANG S, et al. Application of surface electromyography to work-related musculoskeletal disorders research[J]. J Envir Occup Med, 2017, 34(9):812-816. | |
[29] |
MCLEAN L, CHISLETT M, KEITH M, et al. The effect of head position, electrode site, movement and smoothing window in the determination of a reliable maximum voluntary activation of the upper trapezius muscle[J]. J Electromyogr Kinesiol, 2003, 13(2):169-180.
doi: 10.1016/S1050-6411(02)00051-2 |
[30] |
COOLS A M, WITVROUW E E, DE CLERCQ G A, et al. Scapular muscle recruitment pattern: electromyographic response of the trapezius muscle to sudden shoulder movement before and after a fatiguing exercise[J]. J Orthop Sports Phys Ther, 2002, 32(5):221-229.
doi: 10.2519/jospt.2002.32.5.221 |
[31] | ROZZI S L, LEPHART S M, FU F H. Effects of muscular fatigue on knee joint laxity and neuromuscular characteristics of male and female athletes[J]. J Athl Train, 1999, 34(2):106-114. |
[32] |
DI FABIO R P. Reliability of computerized surface electromyography for determining the onset of muscle activity[J]. Phys Ther, 1987, 67(1):43-48.
doi: 10.1093/ptj/67.1.43 |
[33] |
DIGIOVINE N M, JOBE F W, PINK M, et al. An electromyographic analysis of the upper extremity in pitching[J]. J Shoulder Elbow Surg, 1992, 1(1):15-25.
doi: 10.1016/S1058-2746(09)80011-6 |
[34] |
KIBLER W B, CHANDLER T J, LIVINGSTON B P, et al. Shoulder range of motion in elite tennis players. Effect of age and years of tournament play[J]. Am J Sports Med, 1996, 24(3):279-285.
doi: 10.1177/036354659602400306 |
[35] | MCCANN P D, WOOTTEN M E, KADABA M P, et al. A kinematic and electromyographic study of shoulder rehabilitation exercises[J]. Clin Orthop Relat Res, 1993, (288):179-188. |
[36] | PHADKE V, CAMARGO P, LUDEWIG P. Scapular and rotator cuff muscle activity during arm elevation: a review of normal function and alterations with shoulder impingement[J]. Rev Bras Fisioter, 2009, 13(1):1-9. |
[37] |
MCCLURE P W, MICHENER L A, SENNETT B J, et al. Direct 3-dimensional measurement of scapular kinematics during dynamic movements in vivo[J]. J Shoulder Elbow Surg, 2001, 10(3):269-277.
doi: 10.1067/mse.2001.112954 |
[38] | 菲尔·佩治, 克莱尔·弗兰克, 罗伯特·拉德纳. 肌肉失衡的评估与治疗[M]. 焦颖, 李阳,王松, 译. 北京: 人民体育出版社, 2016: 57-153. |
PAGE P, FRANK C, LARDNER R. Assessment and Treatment of Muscle Imbalance [M]. JIAO Y, LI Y, WANG S. Beijing: People's Sports Press, 2016: 57-153. | |
[39] | 黄彩华, 高松龄. PNF伸展和静态伸展对女大学生身体柔韧性的影响[J]. 福建师范大学学报(自然科学版), 2004, 20(3):94-97. |
HUANG C H, GAO S L. The effects of static stretching and PNF stretching on flexibility in college females[J]. J Fujian Norm Univ (Nat Sci Ed), 2004, 20(3):94-97. | |
[40] |
FRANCO B L, SIGNORELLI G R, TRAJANO G S, et al. Acute effects of three different stretching protocols on the Wingate test performance[J]. J Sports Sci Med, 2012, 11(1):1-7.
doi: 10.1016/j.jsams.2007.10.014 |
[41] |
HERBERT R D, GABRIEL M. Effects of stretching before and after exercising on muscle soreness and risk of injury: systematic review[J]. BMJ, 2002, 325(7362):468.
doi: 10.1136/bmj.325.7362.468 |
[42] |
CHAN S P, HONG Y, ROBINSON P D. Flexibility and passive resistance of the hamstrings of young adults using two different static stretching protocols[J]. Scand J Med Sci Sports, 2001, 11(2):81-86.
doi: 10.1034/j.1600-0838.2001.011002081.x |
[43] |
WILLY R W, KYLE B A, MOORE S A, et al. Effect of cessation and resumption of static hamstring muscle stretching on joint range of motion[J]. J Orthop Sports Phys Ther, 2001, 31(3):138-144.
doi: 10.2519/jospt.2001.31.3.138 |
[44] |
FELAND J B, MYRER J W, SCHULTHIES S S, et al. The effect of duration of stretching of the hamstring muscle group for increasing range of motion in people aged 65 years or older[J]. Phys Ther, 2001, 81(5):1110-1117.
doi: 10.1093/ptj/81.5.1110 |
[45] | DRAPER D O, CASTRO J L, FELAND B, et al. Shortwave diathermy and prolonged stretching increase hamstring flexibility more than prolonged stretching alone[J]. J Orthop Sports Phys Ther, 2004, 34(1):13-20. |
[46] |
FOLPP H, DEALL S, HARVEY L A, et al. Can apparent increases in muscle extensibility with regular stretch be explained by changes in tolerance to stretch?[J]. Aust J Physiother, 2006, 52(1):45-50.
doi: 10.1016/S0004-9514(06)70061-7 |
[47] |
REID D A, MCNAIR P J. Passive force, angle, and stiffness changes after stretching of hamstring muscles[J]. Med Sci Sports Exerc, 2004, 36(11):1944-1948.
doi: 10.1249/01.MSS.0000145462.36207.20 |
[48] |
DE WEIJER V C, GORNIAK G C, SHAMUS E. The effect of static stretch and warm-up exercise on hamstring length over the course of 24 hours[J]. J Orthop Sports Phys Ther, 2003, 33(12):727-733.
doi: 10.2519/jospt.2003.33.12.727 |
[49] |
WEPPLER C H, MAGNUSSON S P. Increasing muscle extensibility: a matter of increasing length or modifying sensation?[J]. Phys Ther, 2010, 90(3):438-449.
doi: 10.2522/ptj.20090012 |
[50] |
YLINEN J, TAKALA E P, NYKÄNEN M, et al. Active neck muscle training in the treatment of chronic neck pain in women: a randomized controlled trial[J]. JAMA, 2003, 289(19):2509-2516.
doi: 10.1001/jama.289.19.2509 |
[51] | 朱才兴, 郭燕梅, 焦伟国. 等长收缩运动治疗单纯颈伸肌劳损的疗效观察[J]. 临床军医杂志, 2010, 38(2):206-207. |
ZHU C X, GUO Y M, JIAO W G. Observation on therapeutic effectiveness of isometric contraction movement simple neck extensor strain[J]. Clin J Med Officer, 2010, 38(2):206-207. | |
[52] |
ERIKSSON P O, BUTLER-BROWNE G S, THORNELL L E. Immunohistochemical characterization of human masseter muscle spindles[J]. Muscle Nerve, 1994, 17(1):31-41.
doi: 10.1002/(ISSN)1097-4598 |
[53] | 杨方玖, 薛黔, 李季容. 斜方肌各亚部的肌构筑肌梭分布研究及其临床意义[J]. 中国临床解剖学杂志, 2010, 28(1):7-9. |
YANG F J, XUE Q, LI J R. Muscle architecture and distribution of muscle spindles of compartments of trapezius and their clinical significance[J]. Chin J Clin Anat, 2010, 28(1):7-9. | |
[54] | AMONOO-KUOFI H S. The density of muscle spindles in the medial, intermediate and lateral columns of human intrinsic postvertebral muscles[J]. J Anat, 1983, 136(Pt 3):509-519. |
[55] |
HINTERMEISTER R A, LANGE G W, SCHULTHEIS J M, et al. Electromyographic activity and applied load during shoulder rehabilitation exercises using elastic resistance[J]. Am J Sports Med, 1998, 26(2):210-220.
doi: 10.1177/03635465980260021001 |
[56] |
MAGAREY M E, JONES M A. Dynamic evaluation and early management of altered motor control around the shoulder complex[J]. Man Ther, 2003, 8(4):195-206.
doi: 10.1016/S1356-689X(03)00094-8 |
[57] | 李望. 多通道无线表面肌电采集的同步技术研究[D]. 杭州:浙江大学, 2018. |
LI W. Study on multi-channel wireless sEMG simultaneous acquisition technology[D]. Hangzhou: Zhejiang University, 2018. |
[1] | 马圣楠, 柯竟悦, 董洪铭, 李建萍, 张洪浩, 刘超, 沈双, 李古强. 核心稳定性训练干预前交叉韧带重建术后动态平衡及表面肌电的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 882-889. |
[2] | 崔尧, 丛芳, 黄富表, 曾明, 颜如秀. 不同镜像神经元训练策略下脑与肌肉的活动特征:基于近红外光谱与表面肌电图技术[J]. 《中国康复理论与实践》, 2023, 29(7): 782-790. |
[3] | 李丹, 王剑雄, 黄茂茂, 胥方元, 曾秋, 李佶钖, 李洋, 夏翠宏, 郑雅丹, 胥章彧, 方雯凤, 万腾刚. 健康中老年女性上下楼梯时下肢肌肉的表面肌电图表现[J]. 《中国康复理论与实践》, 2023, 29(6): 731-737. |
[4] | 沈星星, 熊玉玲, 陈伟健, 李聪聪, 李俊毅, 王帅, 章家皓, 向瑞安, 陈佳浩, 刘文刚, 许学猛. 慢性颈痛患者颈肩部肌肉性能差异及其与疼痛、体质量指数的相关性[J]. 《中国康复理论与实践》, 2023, 29(12): 1420-1428. |
[5] | 朱旭,刘静,董泽萍,仇大伟. 基于表面肌电图手势动作意图识别的系统综述[J]. 《中国康复理论与实践》, 2022, 28(9): 1032-1038. |
[6] | 田亚星,洪永锋,阚秀丽,沈显山,毛晶,江炎,何紫艳,吴俣,胡伟,孙晓宁,胡顺银. 徒手感觉刺激对脑卒中偏瘫患者手指痉挛效果的表面肌电图观察[J]. 《中国康复理论与实践》, 2022, 28(5): 515-519. |
[7] | 周越,刘旭,孙悦梅,胡春英,朱悦彤,李渤. 不同运动模式下Flexi-bar训练对躯干稳定性肌肉的影响[J]. 《中国康复理论与实践》, 2022, 28(4): 384-388. |
[8] | 黄兆欣,张艺,崔晨曦,祝晓静,肖晓飞. 基于ICF的青年女性“内八字”步态生物力学分析[J]. 《中国康复理论与实践》, 2022, 28(12): 1459-1465. |
[9] | 郭京伟,葛瑞东,白硕,王家玺,吴帅,王乐. 等速被动运动模式下脑卒中患者下肢痉挛肌群表面肌电信号的特征[J]. 《中国康复理论与实践》, 2022, 28(12): 1473-1477. |
[10] | 职文倩,黄强,李蔷,李艳超,王宇章,杨明,刘晓华. 表面肌电在肘关节骨折术后患者运动功能评估中的应用[J]. 《中国康复理论与实践》, 2022, 28(12): 1478-1483. |
[11] | 李京月,张通,王亚囡,王晨. 三维动态捕捉系统结合表面肌电在脑卒中偏瘫患者上肢运动功能评估中的应用[J]. 《中国康复理论与实践》, 2022, 28(11): 1241-1246. |
[12] | 张静,郭峰. 指屈肌主动不足条件下屈指运动时神经肌肉的调控[J]. 《中国康复理论与实践》, 2021, 27(9): 1104-1109. |
[13] | 张梅莹,赵蕾,李慧,王颖颖,戴世友. 髋周肌群力量训练对功能性踝关节不稳的疗效及表面肌电评价[J]. 《中国康复理论与实践》, 2021, 27(8): 936-942. |
[14] | 曹梦琳,陈宇豪,王珏,刘天. 基于表面肌电图的人体运动意图识别研究进展[J]. 《中国康复理论与实践》, 2021, 27(5): 595-603. |
[15] | 王昱,吴向东,施长城,张佳楫,李娜,马冶浩,陶亮,唐敏,左国坤. 基于力跟踪的上肢康复机器人系统中视觉与触觉反馈融合技术研究[J]. 《中国康复理论与实践》, 2021, 27(4): 478-486. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|