[1] |
FREY H A. The epidemiology, etiology, and costs of preterm birth[J]. Semin Fetal Neonatal Med, 2016, 21(2):68-73.
doi: 10.1016/j.siny.2015.12.011
|
[2] |
MCKENNA M C, SCAFIDI S. Metabolic alterations in developing brain after injury: knowns and unknowns[J]. Neurochem Res, 2015, 40(12):2527-2543.
doi: 10.1007/s11064-015-1600-7
|
[3] |
SALMASO N, JABLONSKA B, SCAFIDI J, et al. Neurobiology of premature brain injury[J]. Nat Neurosci, 2014, 17(3):341-346.
|
[4] |
LAWN J E, KERBER K, ENWERONU-LARYEA C. 3.6 million neonatal deaths: what is progressing and what is not?[J]. Semin Perinatol, 2010, 34(6):371-386.
doi: 10.1053/j.semperi.2010.09.011
|
[5] |
RICE J E, VANNUCCI R C. The influence of immaturity on hypoxic-ischemic brain damage in the rat[J]. Ann Neurol, 1981, 9(2):131-141.
doi: 10.1002/(ISSN)1531-8249
|
[6] |
MALLARD C. Modeling ischemia in the immature brain: how translational are animal models?[J]. Stroke, 2015, 46(10):3006-3011.
doi: 10.1161/STROKEAHA.115.007776
|
[7] |
CHAVEZ-VALDEZ R, EMERSON P, GOFFIGAN-HOLMES J, et al. Delayed injury of hippocampal interneurons after neonatal hypoxia-ischemia and therapeutic hypothermia in a murine model[J]. Hippocampus, 2018, 28(8):617-630.
doi: 10.1002/hipo.v28.8
|
[8] |
Burnsed J C, Chavez-Valdez R, Hossain M S, et al. Hypoxia-ischemia and therapeutic hypothermia in the neonatal mouse brain--a longitudinal study[J]. PLoS One, 2015, 10(3):e0118889.
doi: 10.1371/journal.pone.0118889
|
[9] |
SANCHES E F, ARTENI N S, SCHERER E B, et al. Are the consequences of neonatal hypoxia-ischemia dependent on animals' sex and brain lateralization?[J]. Brain Res, 2013, 1507:105-114.
doi: 10.1016/j.brainres.2013.02.040
|
[10] |
THOMASON M E, SCHEINOST D, MANNING J H, et al. Weak functional connectivity in the human fetal brain prior to preterm birth[J]. Sci Rep, 2017, 7:39286.
doi: 10.1038/srep39286
|
[11] |
SANCHES E F, ARTENI N, NICOLA F, et al. Sexual dimorphism and brain lateralization impact behavioral and histological outcomes following hypoxia-ischemia in P3 and P7 rats[J]. Neuroscience, 2015, 290:581-593.
doi: 10.1016/j.neuroscience.2014.12.074
|
[12] |
MISUMI S, UEDA Y, NISHIGAKI R, et al. Dysfunction in motor coordination in neonatal white matter injury model without apparent neuron loss[J]. Cell Transplant, 2016, 25(7):1381-1393.
doi: 10.3727/096368915X689893
|
[13] |
高长玉, 李冀, 李博文, 等. 六味地黄丸改善脑瘫模型大鼠运动功能的实验研究[J]. 中医药学报, 2017, 45(2):80-82.
|
|
GAO C Y, LI J, LI B W, et al. Acta Chin Med Pharmacol, 2017, 45(2):80-82.
|
[14] |
张宏霞. 基于明暗箱抗焦虑中药药效评价方法及荷叶黄酮抗焦虑作用的研究[D]. 长沙:湖南中医药大学, 2018.
|
|
ZHANG H X. Development of an analysis system of light/dark box and applied in anti-anxiety effects of flavonoids from lotus leaf[D]. Changsha: Hunan University of Chinese Medicine, 2018.
|
[15] |
SANCHES E F, ARTENI N S, SCHERER E B, et al. Are the consequences of neonatal hypoxia-ischemia dependent on animals' sex and brain lateralization?[J]. Brain Res, 2013, 1507:105-114.
doi: 10.1016/j.brainres.2013.02.040
|
[16] |
Sanches E F, Durán-Carabali L E, Tosta A, et al. Pregnancy swimming causes short- and long-term neuroprotection against hypoxia-ischemia in very immature rats[J]. Pediatr Res, 2017, 82(3):544-553.
doi: 10.1038/pr.2017.110
|
[17] |
黄明珠, 黄华品, 林婉挥, 等. SB-271046对匹罗卡品致痫大鼠空间学习记忆的影响[J]. 中风与神经疾病杂志, 2018, 35(1):4-9.
|
|
HUANG M Z, HUANG H P, LIN W H, et al. Effects of SB-271046 on spatial learning-memory in pilocarpine-induced epileptic rats[J]. J Apoplexy Nerv Dis, 2018, 35(1):4-9.
|