1 CurcioF, FerroG, BasileC, et al. Biomarkers in sarcopenia: a multifactorial approach [J]. Exp Gerontol, 2016, 85: 1-8. 2 ScherbakovN, VonH S, AnkerS D, et al. Stroke induced sarcopenia: muscle wasting and disability after stroke [J]. Int J Cardiol, 2013, 170(2): 89-94. 3 TarantinoU, PiccirilliE, FantiniM, et al. Sarcopenia and fragility fractures: molecular and clinical evidence of the bone-muscle interaction [J]. J Bone Joint Surg Am, 2015, 97(5): 429-437. 4 O'learyM F, VainshteinA, IqbalS, et al. Adaptive plasticity of autophagic proteins to denervation in aging skeletal muscle [J]. Am J Physiol Cell Physiol, 2013, 304(5): C422-C430. 5 FryC S, DrummondM J, GlynnE L, et al. Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis [J]. Skelet Muscle, 2011, 1(1): 1-11. 6 HeC, BassikM C, MoresiV, et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis [J]. Nature, 2012, 481(7382): 511-515. 7 KimK H, LeeM S. Autophagy—a key player in cellular and body metabolism [J]. Nat Rev Endocrinol, 2014, 10(6): 322-337. 8 MilanG, RomanelloV, PescatoreF, et al. Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy [J]. Nat Commun, 2015, 6(E9): 6670-6685. 9 GrumatiP, ColettoL, SchiavinatoA, et al. Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles [J]. Autophagy, 2011, 7(12): 1415-1423. 10 寇现娟,陈宁. 自噬在骨骼肌质量维持中的作用与调控[J]. 武汉体育学院学报, 2012, 46(11): 66-71. 11 BillT, SmilesW J, LaneS C, et al. Acute endurance exercise induces nuclear p53 abundance in human skeletal muscle [J]. Front Physiol, 2016, 7(4): 144-154. 12 RussD W, BoydI M, MccoyK M, et al. Muscle-specificity of age-related changes in markers of autophagy and sphingolipid metabolism [J]. Biogerontology, 2015, 16(6): 747-759. 13 SakumaK, KinoshitaM, ItoY, et al. p62/SQSTM1 but not LC3 is accumulated in sarcopenic muscle of mice [J]. J Cachexia Sarcopenia Muscle, 2016, 7(2): 204-212. 14 MalicdanM C, NoguchiS, NonakaI, et al. Lysosomal myopathies: an excessive build-up in autophagosomes is too much to handle [J]. Neuromuscul Disord, 2008, 18(7): 521-529. 15 徐磊,李春艳,陈宁,等. 老年人肌少性肥胖的机制与运动营养调控研究进展[J]. 食品科学, 2017, 38(21): 279-286. 16 SakumaK, AoiW, YamaguchiA. Molecular mechanism of sarcopenia and cachexia: recent research advances [J]. Pflugers Arch, 2017, 469(5-6): 1-19. 17 SanchezA M, BernardiH, PyG, et al. Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise [J]. Am J Physiol Regul Integr Comp Physiol, 2015, 307(8): R956-R969. 18 PetrovskiG, DasD K. Does autophagy take a front seat in lifespan extension? [J]. J Cell Mol Med, 2010, 14(11): 2543-2551. 19 GelinoS, HansenM. Autophagy—An emerging anti-aging mechanism [J]. J Clin Exp Pathol. 2012(Suppl 4): 006. 20 韩佩佩,郭琪,潘翔,等. 老年人肌肉衰减综合征的诊断标准与运动疗法[J]. 中国康复医学杂志, 2015, 30(3): 290-294. 21 赵永军,卢健. 骨骼肌自噬的调控机制与Sarcopenia的关联及运动的影响[J]. 中国运动医学杂志, 2013, 32(10): 929-937. 22 LiuX, NiuY, YuanH, et al. AMPK binds to Sestrins and mediates the effect of exercise to increase insulin-sensitivity through autophagy [J]. Metabolism, 2015, 64(6): 658-665. 23 FanJ, KouX, JiaS, et al. Autophagy as a potential target for sarcopenia [J]. J Cell Physiol, 2016, 231(7): 1450-1459. 24 ZiaaldiniM M, MarzettiE, PiccaA, et al. Biochemical pathways of sarcopenia and their modulation by physical exercise: a narrative review [J]. Front Med (Lausanne), 2017, 4: 167-175. 25 KimJ, KunduM, ViolletB, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 [J]. Nat Cell Biol, 2011, 13(2): 132-141. 26 ZhangL, WangH, ZhuJ, et al. Mollugin induces tumor cell apoptosis and autophagy via the PI3K/AKT/mTOR/p70S6K and ERK signaling pathways [J]. Biochem Biophys Res Commun, 2014, 450(1): 247-254. 27 徐瑞,曹友祥,严翊,等. 运动与骨骼肌自噬研究进展[J]. 中国运动医学杂志, 2018, 37(3): 241-248. 28 YoonM S. mTOR as a key regulator in maintaining skeletal muscle mass [J]. Front Physiol, 2017, 8: 788-797. 29 YongA K, KimY S, OhS L, et al. Autophagic response to exercise training in skeletal muscle with age [J]. J Physiol Biochem, 2013, 69(4): 697-705. 30 MoreiraO C, EstébanezB, Martínez-FlorezS, et al. Mitochondrial function and mitophagy in the elderly: effects of exercise [J]. Oxid Med Cell Longev, 2017, 2017: 2012798. 31 WhiteZ, TerrillJ, WhiteR B, et al. Voluntary resistance wheel exercise from mid-life prevents sarcopenia and increases markers of mitochondrial function and autophagy in muscles of old male and female C57BL/6J mice [J]. Skelet Muscle, 2016, 6(1): 45-66. 32 MackenzieM G, HamiltonD L, MurrayJ T, et al. mVps34 is activated by an acute bout of resistance exercise [J]. Biochem Soc Trans, 2007, 35(5): 1314-1316. 33 LiraV A, OkutsuM, ZhangM, et al. Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance [J]. FASEB J, 2013, 27(10): 4184-4193. 34 M?llerA B, VendelboM H, ChristensenB, et al. Physical exercise increases autophagic signaling through ULK1 in human skeletal muscle [J]. J Appl Physiol (1985), 2015, 118(8): 971-979. 35 SzulcP, FeytC, ChapurlatR. High risk of fall, poor physical function, and low grip strength in men with fracture-the STRAMBO study [J]. J Cachexia Sarcopenia Muscle, 2016, 7(3): 299-311. 36 SteinerJ L, GordonB S, LangC H. Moderate alcohol consumption does not impair overload‐induced muscle hypertrophy and protein synthesis [J]. Physiol Rep, 2015, 3(3): e12333- e12343. 37 BannD, ChenH, BonellC, et al. Socioeconomic differences in the benefits of structured physical activity compared with health education on the prevention of major mobility disability in older adults: the LIFE study [J]. J Epidemiol Community Health, 2016, 70(9): 930-933. |