《中国康复理论与实践》 ›› 2019, Vol. 25 ›› Issue (3): 255-260.doi: 10.3969/j.issn.1006-9771.2019.03.002
雷幸幸1, 顾彬1,2, 宋鲁平1,2,3
收稿日期:
2018-05-20
修回日期:
2018-06-22
出版日期:
2019-03-25
发布日期:
2019-04-02
通讯作者:
宋鲁平,E-mail: songluping882002@aliyun.com
作者简介:
雷幸幸(1995-),女,汉族,河南洛阳市人,硕士研究生,主要研究方向:神经康复及认知神经科学。通讯作者:宋鲁平(1964-),女,汉族,山东人,主任医师,教授,博士研究生导师,主要研究方向:神经康复及认知神经科学。
基金资助:
LEI Xing-xing1, GU Bin1,2, SONG Lu-ping1,2,3
Received:
2018-05-20
Revised:
2018-06-22
Published:
2019-03-25
Online:
2019-04-02
Contact:
SONG Lu-ping, E-mail: songluping882002@aliyun.com
Supported by:
摘要: 老化导致认知功能下降,包括记忆、注意、语言和执行等功能。阿尔茨海默病(AD)是一种与年龄密切相关的进行性神经退行性疾病,认知功能下降是其核心症状之一。经颅直流电刺激(tDCS)已被应用于健康老年人和AD患者,改善生理和病理性老化相关的认知障碍。tDCS能改善老年人的记忆(情景记忆、语义记忆和工作记忆)、语言、错误感知和注意功能,其效果受教育水平、刺激参数和个人任务基线成绩等多种因素影响。tDCS也能改善AD患者的认知功能,效果受解剖差异、疾病严重程度、刺激参数以及评估工具等因素影响。认知训练与tDCS结合可进一步增强老年人和AD患者认知功能。
中图分类号:
雷幸幸, 顾彬, 宋鲁平. 经颅直流电刺激对老化和阿尔茨海默病认知功能影响的研究进展[J]. 《中国康复理论与实践》, 2019, 25(3): 255-260.
LEI Xing-xing, GU Bin, SONG Lu-ping. Effects of Transcranial Direct Current Stimulation on Cognitive Function after Aging and Alzheimer's Disease (review)[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2019, 25(3): 255-260.
1 CelsisP. Age-related cognitive decline, mild cognitive impairment or preclinical Alzheimer's disease? [J]. Ann Med, 2000, 32(1): 6-14. 2 ChristensenP K, DoblhammerP G, RauP R, et al. Ageing populations: the challenges ahead [J]. Lancet, 2009, 374(9696): 1196. 3 MathersC D, StevensG A, BoermaT, et al. Causes of international increases in older age life expectancy [J]. Lancet, 2015, 385(9967): 540-548. 4 AssociationAlzheimer's. 2018 Alzheimer's disease facts and figures [J]. Alzheimers Dement, 2018, 14(3): 367-429. 5 ShafqatS. Alzheimer disease therapeutics: perspectives from developing world [J]. J Alzheimers Dis, 2008, 15(2): 285-287. 6 DedonckerJ, BrunoniA R, BaekenC, et al. A systematic review and meta-analysis of the effects of transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex in healthy and neuropsychiatric samples: influence of stimulation parameters [J]. Brain Stimul, 2016, 9(4): 501-517. 7 GiordanoJ, BiksonM, KappenmanE S, et al. Mechanisms and effects of transcranial direct current stimulation [J]. Dose Response, 2017, 15(1): 1559325816685467. 8 HoffmanR E, CavusI. Slow transcranial magnetic stimulation, long-term depotentiation, and brain hyperexcitability disorders [J]. Am J Psychiatry, 2002, 159(7): 1093. 9 JamilA, BatsikadzeG, KuoH I, et al. Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation [J]. J Physiol, 2017, 595(4): 1273-1288. 10 HoyK E, EmonsonM R, ArnoldS L, et al. Testing the limits: investigating the effect of tDCS dose on working memory enhancement in healthy controls [J]. Neuropsychologia, 2013, 51(9): 1777-1784. 11 MartinsA R, FregniF, SimisM, et al. Neuromodulation as a cognitive enhancement strategy in healthy older adults: promises and pitfalls [J]. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn, 2017, 24(2): 158-185. 12 Fl?elA, SuttorpW, KohlO, et al. Non-invasive brain stimulation improves object-location learning in the elderly [J]. Neurobiol Aging, 2012, 33(8): 1682. 13 SandriniM, ManentiR, BrambillaM, et al. Older adults get episodic memory boosting from noninvasive stimulation of prefrontal cortex during learning [J]. Neurobiol Aging, 2016, 39: 210-216. 14 SandriniM, BrambillaM, ManentiR, et al. Noninvasive stimulation of prefrontal cortex strengthens existing episodic memories and reduces forgetting in the elderly [J]. Front Aging Neurosci, 2014, 6: 289. 15 ManentiR, BrambillaM, PetesiM, et al. Enhancing verbal episodic memory in older and young subjects after non-invasive brain stimulation [J]. Front Aging Neurosci, 2013, 5: 49. 16 RossL A, McCoyD, CoslettH B, et al. Improved proper name recall in aging after electrical stimulation of the anterior temporal lobes [J]. Front Aging Neurosci, 2011, 3: 16. 17 KirovaA M, BaysR B, LagalwarS. Working memory and executive function decline across normal aging, mild cognitive impairment, and Alzheimer's disease [J]. Biomed Res Int, 2015, 2015(6): 1-9. 18 SummersJ J, KangN, CauraughJ H. Does transcranial direct current stimulation enhance cognitive and motor functions in the ageing brain? A systematic review and meta-analysis [J]. Ageing Res Rev, 2016, 25: 42-54. 19 PinalD, ZurronM, DiazF, et al. Stuck in default mode: inefficient cross-frequency synchronization may lead to age-related short-term memory decline [J]. Neurobiol Aging, 2015, 36(4): 1611-1618. 20 BerryhillM E, JonesK T. tDCS selectively improves working memory in older adults with more education [J]. Neurosci Lett, 2012, 521(2): 148-151. 21 CabezaR, AndersonN D, LocantoreJ K, et al. Aging gracefully: compensatory brain activity in high-performing older adults [J]. Neuroimage, 2002, 17(3): 1394-1402. 22 DavisS W, DennisN A, DaselaarS M, et al. Que PASA? The posterior-anterior shift in aging [J]. Cereb Cortex, 2008, 18(5): 1201-1209. 23 BucknerR L, Andrews-HannaJ R, SchacterD L. The brain's default network: anatomy, function, and relevance to disease [J]. Ann N Y Acad Sci, 2008, 1124(1): 1-38. 24 KochW, TeipelS, MuellerS, et al. Effects of aging on default mode network activity in resting state fMRI: does the method of analysis matter? [J]. Neuroimage, 2010, 51(1): 280-287. 25 GradyC L, ProtznerA B, KovacevicN, et al. A multivariate analysis of age-related differences in default mode and task positive networks across multiple cognitive domains [J]. Cereb Cortex, 2010, 20(6): 1432. 26 MeinzerM, LindenbergR, AntonenkoD, et al. Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes [J]. J Neurosci, 2013, 33(30): 12470-12478. 27 TuschE S, AlperinB R, RyanE, et al. Changes in neural activity underlying working memory after computerized cognitive training in older adults [J]. Front Aging Neurosci, 2016, 8: e102710. 28 van DinterenR, ArnsM, JongsmaM L, et al. Combined frontal and parietal P300 amplitudes indicate compensated cognitive processing across the lifespan [J]. Front Aging Neurosci, 2014, 6: 294. 29 CesponJ, RodellaC, RossiniP M, et al. Anodal transcranial direct current stimulation promotes frontal compensatory mechanisms in healthy elderly subjects [J]. Front Aging Neurosci, 2017, 9: 420. 30 SantarnecchiE, BremA K, LevenbaumE, et al. Enhancing cognition using transcranial electrical stimulation [J]. Curr Opin Behav Sci, 2015, 4: 171-178. 31 PassowS, ThurmF, LiS C. Activating developmental reserve capacity via cognitive training or non-invasive brain stimulation: potentials for promoting fronto-parietal and hippocampal-striatal network functions in old age [J]. Front Aging Neurosci, 2017, 9: 33. 32 ElmasryJ, LooC, MartinD. A systematic review of transcranial electrical stimulation combined with cognitive training [J]. Restor Neurol Neurosci, 2015, 33(3): 263-278. 33 PrehnK, FloelA. Potentials and limits to enhance cognitive functions in healthy and pathological aging by tDCS [J]. Front Cell Neurosci, 2015, 9: 355. 34 AuJ, KarstenC, BuschkuehlM, et al. Optimizing transcranial direct current stimulation protocols to promote long-term learning [J]. J Cogn Enhanc, 2017, 1(1): 65-72. 35 MartinD M, LiuR, AlonzoA, et al. Can transcranial direct current stimulation enhance outcomes from cognitive training? A randomized controlled trial in healthy participants [J]. Int J Neuropsychopharmacol, 2013, 16(9): 1927-1936. 36 ParkS H, SeoJ H, KimY H, et al. Long-term effects of transcranial direct current stimulation combined with computer-assisted cognitive training in healthy older adults [J]. Neuroreport, 2014, 25(2): 122-126. 37 IachiniI, IavaroneA, SeneseVP, et al. Visuospatial memory in healthy elderly, AD and MCI: a review [J]. Curr Aging Sci, 2009, 2(1): 43-59. 38 AntonenkoD, KulzowN, SousaA, et al. Neuronal and behavioral effects of multi-day brain stimulation and memory training [J]. Neurobiol Aging, 2018, 61: 245-254. 39 KulzowN, Cavalcanti de SousaA V, CesarzM, et al. No effects of non-invasive brain stimulation on multiple sessions of object-location-memory training in healthy older adults [J]. Front Neurosci, 2017, 11: 746. 40 HorvathJ C, ForteJ D, CarterO. Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS) [J]. Brain Stimul, 2015, 8(3): 535-550. 41 WangJ X, VossJ L. Long-lasting enhancements of memory and hippocampal-cortical functional connectivity following multiple-day targeted noninvasive stimulation [J]. Hippocampus, 2015, 25(8): 877-883. 42 FertonaniA, BrambillaM, CotelliM, et al. The timing of cognitive plasticity in physiological aging: a tDCS study of naming [J]. Front Aging Neurosci, 2014, 6: 131. 43 MeinzerM, LindenbergR, SiegM M, et al. Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults [J]. Front Aging Neurosci, 2014, 6: 253. 44 HartyS, RobertsonI H, MiniussiC, et al. Transcranial direct current stimulation over right dorsolateral prefrontal cortex enhances error awareness in older age [J]. J Neurosci, 2014, 34(10): 3646-3652. 45 LearmonthG, ThutG, BenwellC S, et al. The implications of state-dependent tDCS effects in aging: Behavioural response is determined by baseline performance [J]. Neuropsychologia, 2015, 74: 108-119. 46 KimY J. Transcranial direct current stimulation as an alternative treatment in patients with Alzheimer's disease [J]. Brain Neurorehabil, 2017, 10(1): e4. 47 梁宝今,梁涛,王晓文,等. 经颅直流电刺激对阿尔茨海默病认知功能的研究进展[J]. 中国康复医学杂志, 2017, 32(8): 959-962. 48 张凤霞,郑彩霞,黄晓琳. 经颅直流电刺激用于治疗阿尔茨海默病的研究进展[J]. 中国康复医学杂志, 2017, 32(9): 1068-1073. 49 C R JrJack. Alliance for aging research AD biomarkers work group: structural MRI [J]. Neurobiol Aging, 2011, 32(Suppl 1): S48-S57. 50 EichenbaumH. Prefrontal-hippocampal interactions in episodic memory [J]. Nat Rev Neurosci, 2017, 18(9): 547-558. 51 PolaniaR, NitscheM A, PaulusW. Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation [J]. Hum Brain Mapp, 2011, 32(8): 1236-1249. 52 MeinzerM, LindenbergR, PhanM T, et al. Transcranial direct current stimulation in mild cognitive impairment: behavioral effects and neural mechanisms [J]. Alzheimers Dement, 2015, 11(9): 1032-1040. 53 ElderG J, TaylorJ P. Transcranial magnetic stimulation and transcranial direct current stimulation: treatments for cognitive and neuropsychiatric symptoms in the neurodegenerative dementias? [J]. Alzheimers Res Ther, 2014, 6(9): 74. 54 BoggioP S, KhouryL P, MartinsD C, et al. Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease [J]. J Neurol Neurosurg Psychiatry, 2009, 80(4): 444-447. 55 BoggioP S, FerrucciR, MameliF, et al. Prolonged visual memory enhancement after direct current stimulation in Alzheimer's disease [J]. Brain Stimul, 2012, 5(3): 223-230. 56 FerrucciR, MameliF, GuidiI, et al. Transcranial direct current stimulation improves recognition memory in Alzheimer disease [J]. Neurology, 2008, 71(7): 493-498. 57 KhedrE M, GamalN F, El-FetohN A, et al. A double-blind randomized clinical trial on the efficacy of cortical direct current stimulation for the treatment of Alzheimer's disease [J]. Front Aging Neurosci, 2014, 6: 275. 58 BystadM, RasmussenI D, GronliO, et al. Can 8 months of daily tDCS application slow the cognitive decline in Alzheimer's disease? A case study [J]. Neurocase, 2017, 23(2): 146-148. 59 BystadM, GronliO, RasmussenI D, et al. Transcranial direct current stimulation as a memory enhancer in patients with Alzheimer's disease: a randomized, placebo-controlled trial [J]. Alzheimers Res Ther, 2016, 8(1): 13. 60 LiuC S, RauA, GallagherD, et al. Using transcranial direct current stimulation to treat symptoms in mild cognitive impairment and Alzheimer's disease [J]. Neurodegener Dis Manag, 2017, 7(5): 317-329. 61 LeeM S, LeeS H, MoonE O, et al. Neuropsychological correlates of the P300 in patients with Alzheimer's disease [J]. Prog Neuropsychopharmacol Biol Psychiatry, 2013, 40: 62-69. 62 PedrosoR V, FragaF J, CorazzaD I, et al. P300 latency and amplitude in Alzheimer's disease: a systematic review [J]. Braz J Otorhinolaryngol, 2012, 78(4): 126-132. 63 HsuW Y, KuY, ZantoT P, et al. Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer's disease: a systematic review and meta-analysis [J]. Neurobiol Aging, 2015, 36(8): 2348-2359. 64 VanniniP, HanseeuwB, MunroC E, et al. Hippocampal hypometabolism in older adults with memory complaints and increased amyloid burden [J]. Neurology, 2017, 88(18): 1759-1767. 65 ManentiR, SandriniM, GobbiE, et al. Strengthening of existing episodic memories through non-invasive stimulation of prefrontal cortex in older adults with subjective memory complaints [J]. Front Aging Neurosci, 2017, 9: 401. 66 HampsteadB, GopinathK. Behavioral and fMRI changes associated with combined tDCS and cognitive rehabilitation in a case series of patients with mild cognitive impairment [J]. Clin Neurophysiol, 2013, 124(10): 123-124. 67 PenolazziB, BergamaschiS, PastoreM, et al. Transcranial direct current stimulation and cognitive training in the rehabilitation of Alzheimer disease: a case study [J]. Neuropsychol Rehabil, 2015, 25(6): 799-817. 68 RonceroC, KniefelH, ServiceE, et al. Inferior parietal transcranial direct current stimulation with training improves cognition in anomic Alzheimer's disease and frontotemporal dementia [J]. Alzheimers Dement, 2017, 3(2): 247-253. 69 CotelliM, ManentiR, BrambillaM, et al. A nodal tDCS during face-name associations memory training in Alzheimer's patients [J]. Front Aging Neurosci, 2014, 6: 38. 70 MarcegliaS, Mrakic-SpostaS, RosaM, et al. Transcranial direct current stimulation modulates cortical neuronal activity in Alzheimer's disease [J]. Front Neurosci, 2016, 10: 134. 71 KesslerS K, TurkeltaubP E, BensonJ G, et al. Differences in the experience of active and sham transcranial direct current stimulation [J]. Brain Stimul, 2012, 5(2): 155-162. 72 FloelA, MeinzerM, KirsteinR, et al. Short-term anomia training and electrical brain stimulation [J]. Stroke, 2011, 42(7): 2065-2067. 73 BenwellC S, LearmonthG, MiniussiC, et al. Non-linear effects of transcranial direct current stimulation as a function of individual baseline performance: Evidence from biparietal tDCS influence on lateralized attention bias [J]. Cortex, 2015, 69: 152-165. 74 HsuT Y, JuanC H, TsengP. Individual differences and state-dependent responses in transcranial direct current stimulation [J]. Front Hum Neurosci, 2016, 10: 643. |
[1] | 邵伟婷, 雷江华. 反应中断再定向干预孤独症谱系障碍儿童刻板语言的效果:Scoping综述[J]. 《中国康复理论与实践》, 2024, 30(1): 10-20. |
[2] | 周治宁, 周容, 肖燕文, 王博文, 吕娇娇, 刘宇. 多靶区经颅直流电刺激对健康成年人工作记忆-姿势控制双任务表现的影响[J]. 《中国康复理论与实践》, 2024, 30(1): 21-28. |
[3] | 王航宇, 葛可可, 范永红, 都丽露, 邹敏, 封磊. 基于ICD-11和ICF主动式音乐疗法改善认知障碍老年人认知功能的系统综述[J]. 《中国康复理论与实践》, 2024, 30(1): 36-43. |
[4] | 闻嘉宁, 金秋艳, 张琦, 李杰, 司琦. 认知参与型身体活动对发展儿童青少年执行功能的效果:基于ICF的系统综述[J]. 《中国康复理论与实践》, 2024, 30(1): 44-53. |
[5] | 葛可可, 范永红, 王航宇, 都丽露, 李长江, 邹敏. 失眠老年人正念干预健康效益的系统综述[J]. 《中国康复理论与实践》, 2024, 30(1): 54-60. |
[6] | 张婧雅, 邹敏, 孙宏伟, 孙昌隆, 朱峻同. 听障儿童青少年焦虑或抑郁情绪心理干预效果的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1004-1011. |
[7] | 王俊宇, 杨永, 袁逊, 谢婷, 庄洁. 高强度间歇训练对健康儿童青少年执行功能效果的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1012-1020. |
[8] | 魏晓微, 杨剑, 魏春艳. 特殊教育学校孤独症谱系障碍儿童参与适应性瑜伽活动的心理与行为效益的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1021-1028. |
[9] | 杨亚茹, 杨剑. 基于WHO-HPS架构学校身体活动相关健康服务及其健康效益:系统综述的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1040-1047. |
[10] | 史佳伟, 李凌宇, 杨浩杰, 王琴潞, 邹海欧. 预康复对全膝关节置换术后患者的有效性:系统综述的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1057-1064. |
[11] | 蒋长好, 黄辰, 高晓妍, 戴元富, 赵国明. 神经反馈训练对老年人认知功能效果的系统综述[J]. 《中国康复理论与实践》, 2023, 29(8): 903-909. |
[12] | 魏晓微, 杨剑, 魏春艳, 贺启令. 学校环境下适应性体育课程促进智力与发展性残疾儿童心理运动发展的系统综述[J]. 《中国康复理论与实践》, 2023, 29(8): 910-918. |
[13] | 王海云, 王寅, 周信杰, 何爱群. 基于“中枢-外周-中枢”理论的经颅直流电刺激结合针刺干预脑卒中患者中枢及上肢功能的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 919-925. |
[14] | 李芳, 霍速, 杜巨豹, 刘秀贞, 李小爽, 宋为群. 经颅直流电刺激联合任务导向性康复训练对脊髓损伤大鼠前肢运动障碍的效果[J]. 《中国康复理论与实践》, 2023, 29(7): 777-781. |
[15] | 张园, 杨剑. 基于世界卫生组织健康促进学校架构的学校健康服务及效果:Scoping综述[J]. 《中国康复理论与实践》, 2023, 29(7): 791-799. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|