《中国康复理论与实践》 ›› 2018, Vol. 24 ›› Issue (7): 865-868.doi: 10.3969/j.issn.1006-9771.2018.07.022

• 康复工程与辅助技术 • 上一篇    

基于人体加速度多特征融合和K近邻算法的跌倒检测

华仙1, 席旭刚2   

  1. 1.金华市人民医院,浙江金华市 321000;
    2.杭州电子科技大学智能控制与机器人研究所,浙江杭州市 310018
  • 收稿日期:2017-12-25 修回日期:2018-05-21 出版日期:2018-07-25 发布日期:2018-08-01
  • 通讯作者: 席旭刚。E-mail: xixugang@hdu.edu.cn
  • 作者简介:华仙(1986-),女,汉族,浙江金华市人,硕士,主治医师,主要研究方向:老年人康复训练、中西医结合心血管疾病。通讯作者:席旭刚(1975-),男,汉族,浙江金华市人,博士,副教授,主要研究方向:生物医学信号处理,康复机器人。
  • 基金资助:
    1.国家自然科学基金项目(No. 61671197); 2.浙江省基础公益研究计划项目(No. LGF18F010006)

Fall Detection Based on Multi-feature Fusion of Human Body Acceleration and K-Nearest Neighbor

HUA Xian1, XI Xu-gang2   

  1. 1. Jinhua People's Hospital, Jinhua, Zhejiang 321000, China;
    2. Intelligent Control & Robotics Institute of Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
  • Received:2017-12-25 Revised:2018-05-21 Published:2018-07-25 Online:2018-08-01
  • Contact: XI Xu-gang. E-mail: xixugang@hdu.edu.cn
  • Supported by:
    Supported by National Natural Science Foundation of China (No. 61671197) and Zhejiang Public Basic Research Plan (No. LGF18F010006)

摘要: 目的 探索基于人体加速度的跌倒检测方法。方法 2017年9月至11月,6例健康青年志愿者完成13个跌倒动作和11个日常活动动作。通过两个加速度传感器采集人体动作信息,每个加速度传感器提取81个加速度特征参数。通过主成分分析降维,输入K近邻(KNN)算法分类器对跌倒和日常动作进行识别。结果 跌倒检测敏感性100%,特异性99.76%,检测时间216 ms。结论 加速度多特征融合和KNN算法可以实现跌倒的及时有效检测。

关键词: 跌倒, 检测, 人体加速度, 动作, 特征提取

Abstract: Objective To develop a kind of algorithm for fall detection based on human acceleration. Methods From September to November, 2017, six healthy postgraduates participating in the experiment completed 13 acts of falls and eleven of activities of daily life. The information of activities was collected through two acceleration sensors, 81 acceleration features were extracted from each sensor, and were reduced dimension through principal component analysis. K-nearest neighbor was used to detect the falls and activities of daily living. Results The sensitivity of fall detection was 100%, the specificity was 99.76%, and the detection time was 216 ms. Conclusion The algorithm of multi-feature fusion of human body acceleration and K-nearest neighbor is accurate and timely.

Key words: fall, detection, human body acceleration, acts, feature extraction

中图分类号: