[1] 朱图陵. 辅助技术在老年人康复中的应用[J]. 中国康复理论与实践, 2017, 23(8): 971-975. [2] Khan SS, Hoey J.Review of fall detection techniques: a data availability perspective[J]. Med Eng Phys, 2017, 39: 12-22. [3] Rodríguez-Martín D, Pérez-López C, Samà A, et al.A wearable inertial measurement unit for long-term monitoring in the dependency care area[J]. Sensors, 2013, 13(10): 14079-14104. [4] 徐欣,温子星. 人体动态稳定性控制理论在老年人防跌倒中的应用[J]. 中国康复理论与实践, 2017, 23(11): 1254-1257. [5] Leone A, Rescio G, Caroppo A, et al.An EMG-based system for pre-impact fall detection[C]. 2015 IEEE Sensors. IEEE, 2015: 1-4. [6] Mubashir M, Shao L, Seed L.A survey on fall detection: principles and approaches[J]. Neurocomputing, 2013, 100: 144-152. [7] Hegde R, Sudarshan B, Kumar SP, et al.Technical advances in fall detection system—a review[J]. Int J Comput Sci Mob Comput, 2013, 2: 152-160. [8] Gonzálezvillanueva L, Cagnoni S, Ascari L.Design of a wearable sensing system for human motion monitoring in physical rehabilitation[J]. Sensors, 2013, 13(6): 7735-7755. [9] Cheng WC, Jhan DM.Triaxial accelerometer-based fall detection method using a self-constructing cascade-AdaBoost-SVM classifier[J]. IEEE J Biomed Health Inform, 2013, 17(2): 411-419. [10] Abbate S, Avvenuti M, Corsini P, et al.Monitoring of human movements for fall detection and activities recognition in elderly care using wireless sensor network: a survey[M]// Merret GV, Tan YK. Wireless Sensor Networks: Application-Centric Design. Rijeka: InTech, 2010. [11] Soran B, Farhadi A, Shapiro L.Action recognition in the presence of one egocentric and multiple static cameras[C]. Asian Conference on Computer Vision, Springer, Cham, 2014: 178-193. [12] Sevrin L, Noury N, Abouchi N, et al.Characterization of a multi-user indoor positioning system based on low cost depth vision (Kinect) for monitoring human activity in a smart home[C]. Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE, IEEE, 2015: 5003-5007. [13] Staranowicz A, Brown GR, Mariottini GL.Evaluating the accuracy of a mobile Kinect-based gait-monitoring system for fall prediction[C]. Proceedings of the 6th international conference on PErvasive technologies related to assistive environments, ACM, 2013: 57. [14] Vuegen L, van den Broeck B, Karsmakers P, et al. Automatic monitoring of activities of daily living based on real-life acoustic sensor data: a preliminary study[C]. Proceedings of the Fourth Workshop on Speech and Language Processing for Assistive Technologies, 2013: 113-118. [15] Siantikos G, Giannakopoulos T, Konstantopoulos S.Monitoring activities of daily living using audio analysis and a RaspberryPI: a use case on bathroom activity monitoring[C]. International Conference on Information and Communication Technologies for Ageing Well and e-Health, Springer, Cham, 2016: 20-32. [16] Fortino G, Gravina R.Fall-MobileGuard: a smart real-time fall detection system[C]. Proceedings of the 10th EAI International Conference on Body Area Networks. ICST, 2015: 44-50. [17] Yi YJ, Yu YS.Emergency monitoring system based on a newly-developed fall detection algorithm[J]. J Inf Commun Converg Eng, 2013, 11(3): 199-206. [18] Kangas M, Vikman I, Wiklander J, et al.Sensitivity and specificity of fall detection in people aged 40 years and over[J]. Gait Posture, 2009, 29(4): 571-574. [19] Ahmed M, Mehmood N, Nadeem A, et al.Fall detection system for the elderly based on the classification of shimmer sensor prototype data[J]. Healthc Inform Res, 2017, 23(3): 147-158. [20] Aziz O, Klenk J, Schwickert L, et al.Validation of accuracy of SVM-based fall detection system using real-world fall and non-fall datasets[J]. PLoS One, 2017, 12(7): e0180318. [21] 刘鹏,卢潭城,吕愿愿,等. 基于MEMS三轴加速度传感器的摔倒检测[J]. 传感技术学报, 2014, 27(4): 570-574. [22] Yu S, Chen H, Brown RA.Hidden Markov model-based fall detection with motion sensor orientation calibration: a case for real-life home monitoring[J]. IEEE J Biomed Health, 2017. [Epub ahead of print]. doi: 10.1109/JBHI.2017.2782079. [23] Chen KH, Yang JJ, Jaw FS.Accelerometer-based fall detection using feature extraction and support vector machine algorithms[J]. Instrum Sci Technol, 2016, 44(4): 333-342. [24] Rescio G, Leone A, Siciliano P.Support vector machine for tri-axial accelerometer-based fall detector[C]. Advances in Sensors and Interfaces (IWASI), 2013 5th IEEE International Workshop on IEEE, 2013: 25-30. [25] Nii M, Iwamoto T, Ishibashi Y, et al.Improvement of fuzzy neural network based human activity estimation system[C]. Systems, Man, and Cybernetics (SMC), 2015 IEEE International Conference on IEEE, 2015: 2310-2315. |