[1] Klein-Nulend J, Bacabac RG, Bakker AD. Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton [J]. Eur Cell Mater, 2012, 24(12): 278-291. [2] 熊燕琴,周筠,雷涛. 骨代谢信号通路的研究进展 [J]. 中国骨质疏松杂志, 2014, 20(2): 200-204. [3] Endo I, Matsumoto T. [Space flight/bedrest immobilization and bone. Bisphosphonate and the loss of bone mineral due to space flight or prolonged bed rest] [J]. [in Japanese]. Clin Calcium, 2012, 22(12): 1863-1870. [4] Belavy DL, Baecker N, Armbrecht G, et al. Serum sclerostin and DKK1 in relation to exercise against bone loss in experimental bed rest [J]. J Bone Miner Metab, 2016, 34(3): 354-365. [5] Zhong Z, Zeng XL, Ni JH, et al. Comparison of the biological response of osteoblasts after tension and compression [J]. Eur J Orthod, 2013, 35(1): 59-65. [6] Thompson WR, Rubin CT, Rubin J. Mechanical regulation of signaling pathways in bone [J]. Gene, 2012, 503(2): 179-193. [7] 李丽辉,杨杰,董洁琼,等. 运动对去卵巢骨质疏松大鼠OPG、RANKL表达的影响[J]. 中国运动医学杂志, 2013, 32(11): 991-996. [8] Czarkowska-Paczek B, Weso?owska K, Przybylski J. [Physical exercise prevents osteoporosis] [J]. [in Polish]. Przegl Lek, 2011, 68(2): 103-106. [9] Rossini M, Gatti D, ADAMI S. Involvement of WNT/beta-catenin signaling in the treatment of osteoporosis [J]. Calcif Tissue Int, 2013, 93(2): 121-132. [10] Armstrong VJ, Muzylak M, Sunters A, et al. Wnt/beta-catenin signaling is a component of osteoblastic bone cell early responses to load-bearing and requires estrogen receptor alpha [J]. J Biol Chem, 2007, 282(28): 20715-20727. [11] 李云矗,徐刚,徐成福. Wnt/β-catenin信号通路及其对骨髓间充质干细胞多向分化调节研究进展[J]. 牡丹江医学院学报, 2016, 37(1): 99-102. [12] Robinson JA, Chatterjee-kishore M, Yaworsky PJ, et al. Wnt/beta-catenin signaling is a normal physiological response to mechanical loading in bone [J]. J Biol Chem, 2006, 281(42): 31720-31728. [13] 杨念恩. 不同方式运动对生长期小鼠骨合成代谢和Wnt信号通路的影响[D]. 上海:华东师范大学, 2014. [14] Case N, Thomas J, Xie Z, et al. Mechanical input restrains PPARgamma2 expression and action to preserve mesenchymal stem cell multipotentiality [J]. Bone, 2013, 52(1): 454-464. [15] Zeng L, Fagotto F, Zhang T, et al. The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation [J]. Cell, 1997, 90(1): 181-192. [16] Norvell SM, Alvarez M, Bidwell JP, et al. Fluid shear stress induces beta-catenin signaling in osteoblasts [J]. Calcif Tissue Int, 2004, 75(5): 396-404. [17] Case N, Xie Z, Sen B, et al. Mechanical activation of beta-catenin regulates phenotype in adult murine marrow-derived mesenchymal stem cells [J]. J Orthop Res, 2010, 28(11): 1531-1538. [18] Case N, Ma M, Sen B, et al. Beta-catenin levels influence rapid mechanical responses in osteoblasts [J]. J Biol Chem, 2008, 283(43): 29196-29205. [19] 陈熙,郭健民,元宇, 等. 不同牵张应力对成骨细胞MC3T3-E1分化及Wnt信号转导通路的影响研究 [J]. 中国骨质疏松杂志, 2016, 22(1): 9-13. [20] Tu X, Rhee Y, Condon KW, et al. SOST downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading [J]. Bone, 2012, 50(1): 209-217. [21] Morse A, Mcdonald MM, Kelly NH, et al. Mechanical load increases in bone formation via a sclerostin-independent pathway [J]. J Bone Miner Res, 2014, 29(11): 2456-2467. [22] Cai J, Pardali E, Sanchez-duffhues G, et al. BMP signaling in vascular diseases [J]. FEBS Lett, 2012, 586(14): 1993-2002. [23] Wang L, Zhang X, Guo Y, et al. Involvement of BMPs/Smad signaling pathway in mechanical response in osteoblasts [J]. Cell Physiol Biochem, 2010, 26(6): 1093-1102. [24] Kido S, Kuriwaka-kido R, Umino-miyatani Y, et al. Mechanical stress activates Smad pathway through PKCdelta to enhance interleukin-11 gene transcription in osteoblasts [J]. PLoS One, 2010, 5(9): e13090. [25] Rath B, Nam J, Deschner J, et al. Biomechanical forces exert anabolic effects on osteoblasts by activation of SMAD 1/5/8 through type 1 BMP receptor [J]. Biorheology, 2011, 48(1): 37-48. [26] Guo Y, Zhang CQ, Zeng QC, et al. Mechanical strain promotes osteoblast ECM formation and improves its osteoinductive potential [J]. Biomed Eng Online, 2012, 11:80. [27] Wang L, Li JY, Zhang XZ, et al. Involvement of p38MAPK/NF-kappaB signaling pathways in osteoblasts differentiation in response to mechanical stretch [J]. Ann Biomed Eng, 2012, 40(9): 1884-1894. [28] Karasawa Y, Tanaka H, Nakai K, et al. Tension Force downregulates matrix metalloproteinase expression and upregulates the expression of their inhibitors through MAPK signaling pathways in MC3T3-E1 cells [J]. Int J Med Sci, 2015, 12(11): 905-913. [29] Kanno T, Takahashi T, Tsujisawa T, et al. Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signaling in osteoblasts [J]. J Cell Biochem, 2007, 101(5): 1266-1277. [30] Ren D, Wei F, Hu L, et al. Phosphorylation of Runx2, induced by cyclic mechanical tension via ERK1/2 pathway, contributes to osteodifferentiation of human periodontal ligament fibroblasts [J]. J Cell Biochem, 2015, 230(10): 2426-2436. [31] Bo Z, Bin G, Jing W, et al. Fluid shear stress promotes osteoblast proliferation via the Galphaq-ERK5 signaling pathway [J]. Connect Tissue Res, 2016, 57(4): 299-306. [32] Bin G, Cuifang W, Bo Z, et al. Fluid shear stress inhibits TNF-alpha-induced osteoblast apoptosis via ERK5 signaling pathway [J]. Biochem Biophys Res Commun, 2015, 466(1): 117-123. [33] Zhao LG, Chen SL, Teng YJ, et al. The MEK5/ERK5 pathway mediates fluid shear stress promoted osteoblast differentiation [J]. Connect Tissue Res, 2014, 55(2): 96-102. [34] 戴杰,陈现红,邓伟民. 机械振动对骨内细胞效应基础研究进展[J]. 中华骨质疏松和骨矿盐疾病杂志, 2014, 7(3): 287-292. [35] Ominsky MS, Li X, Asuncion FJ, et al. RANKL inhibition with osteoprotegerin increases bone strength by improving cortical and trabecular bone architecture in ovariectomized rats [J]. J Bone Miner Res, 2008, 23(5): 672-682. [36] Tang L, Lin Z, Li YM. Effects of different magnitudes of mechanical strain on Osteoblasts in vitro [J]. Biochem Biophys Res Commun, 2006, 344(1): 122-128. [37] Zhang L, Liu W, Zhao J, et al. Mechanical stress regulates osteogenic differentiation and RANKL/OPG ratio in periodontal ligament stem cells by the Wnt/beta-catenin pathway [J]. Biochim Biophys Acta, 2016, 1860(10): 2211-2219. [38] Sanchez C, Gabay O, Salvat C, et al. Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts [J]. Osteoarthritis Cartilage, 2009, 17(4): 473-481. [39] 赵仁清. 大负荷运动对大鼠血清OPG、sRANKL、骨代谢及骨量的影响[J]. 体育与科学, 2011, 32(2): 88-90. [40] 李盛村,鲍捷,王静,等. 跳跃性应力刺激对大鼠胫骨OPG、RANKL及骨代谢的影响[J]. 中国运动医学杂志, 2014, 33(6): 542-546. [41] Kaneuji T, Ariyoshi W, Okinaga T, et al. Mechanisms involved in regulation of osteoclastic differentiation by mechanical stress-loaded osteoblasts [J]. Biochem Biophys Res Commun, 2011, 408(1): 103-109. [42] 马涛,李世昌. 上、下坡跑台运动对去卵巢小鼠破骨细胞分化NF-κB信号通路的影响[J]. 中国运动医学杂志, 2015, 34(5): 468-474. [43] Yang SY, Wei FL, Hu LH, et al. PERK-eIF2alpha-ATF4 pathway mediated by endoplasmic reticulum stress response is involved in osteodifferentiation of human periodontal ligament cells under cyclic mechanical force [J]. Cell Signal, 2016, 28(8): 880-886. [44] 陈祥和,李世昌,严伟良,等. Hedgehog信号通路对成骨细胞分化和骨形成的影响及不同方式运动的调控[J]. 北京体育大学学报, 2015, 38(11): 59-64. [45] 王守丰,邱勇. 软骨内成骨的调控[J]. 中华外科杂志, 2006, 44(16): 1147-1149. [46] 王燕杰. 运动对Ihh/PTHrP信号通路调控骨形成的影响研究[J]. 当代体育科技, 2014, 4(27): 13-14. [47] 穆树云. 不同方式运动对生长期小鼠骨密度及Notch信号通路相关基因表达的影响[D]. 上海:华东师范大学, 2015. [48] Case N, Thomas J, Sen B, et al. Mechanical regulation of glycogen synthase kinase 3β (GSK3β) in mesenchymal stem cells is dependent on Akt protein serine 473 phosphorylation via mTORC2 protein. [J]. J Biol Chem, 2011, 286(45): 39450-39456. |