[1] Zhao H, Cheng L, Liu Y, et al. Mechanisms of anti-inflammatory property of conserved dopamine neurotrophic factor: inhibition of JNK signaling in lipopolysaccharide-induced microglia [J]. J Mol Neurosci, 2014, 52(2): 186-192. [2] Winship IR, Armitage GA, Ramakrishnan G, et al. Augmenting collateral blood flow during ischemic stroke via transient aortic occlusion [J]. J Cereb Blood Flow Metab, 2014, 34(1): 61-71. [3] Kishore A, Vail A, Majid A, et al. Detection of atrial fibrillation after ischemic stroke or transient ischemic attack: a systematic review and meta-analysis [J]. Stroke, 2014, 45(2): 520-526. [4] Su P, Zhang J, Wang D, et al. The role of autophagy in modulation of neuroinflammation in microglia [J]. Neuroscience, 2016, 319: 155-167. [5] Saitoh T, Akira S. Regulation of innate immune responses by autophagy-related proteins [J]. J Cell Biol, 2010, 189(6): 925-935. [6] Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation [J]. Nature, 2011, 469(7330): 323-335. [7] Jiang P, Mizushima N. Autophagy and human diseases [J]. Cell Res, 2014, 24(1): 69-79. [8] Bie M, Lv Y, Ren C et al. Lycium barbarum polysaccharide improves bipolar pulse current-induced microglia cell injury through modulating autophagy [J]. Cell Transplant, 2015, 24(3): 419-428. [9] Chuang SY, Lin CH, Fang JY. Natural compounds and aging: between autophagy and inflammasome [J]. Biomed Res Int, 2014, 2014: 297293. [10] Neumann J, Sauerzweig S, Ronicke R, et al. Microglia cells protect neurons by direct engulfment of invading neutrophil granulocytes: a new mechanism of CNS immune privilege [J]. J Neurosci, 2008, 28(23): 5965-5975. [11] Zhou R, Yang Z, Tang X, et al. Propofol protects against focal cerebral ischemia via inhibition of microglia-mediated proinflammatory cytokines in a rat model of experimental stroke [J]. PLoS One, 2013, 8(12): e82729. [12] Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view [J]. Trends Neurosci, 1999, 22(9): 391-397. [13] Schilling M, Besselmann M, Muller M, et al. Predominant phagocytic activity of resident microglia over hematogenous macrophages following transient focal cerebral ischemia: an investigation using green fluorescent protein transgenic bone marrow chimeric mice [J]. Exp Neurol, 2005, 196(2): 290-297. [14] Fu R, Shen Q, Xu P, et al. Phagocytosis of microglia in the central nervous system diseases [J]. Mol Neurobiol, 2014, 49(3): 1422-1434. [15] Yang Z, Zhang N, Shen H, et al. Microglial activation with reduction in autophagy limits white matter lesions and improves cognitive defects during cerebral hypoperfusion [J]. Curr Neurovasc Res, 2014, 11(3): 223-229. [16] Yang Z, Zhong L, Zhong S, et al. Hypoxia induces microglia autophagy and neural inflammation injury in focal cerebral ischemia model [J]. Exp Mol Pathol, 2015, 98(2): 219-224. [17] Zhou X, Zhou J, Li X, et al. GSK-3beta inhibitors suppressed neuroinflammation in rat cortex by activating autophagy in ischemic brain injury [J]. Biochem Biophys Res Commun, 2011, 411(2): 271-275. [18] Jing CH, Wang L, Liu PP, et al. Autophagy activation is associated with neuroprotection against apoptosis via a mitochondrial pathway in a rat model of subarachnoid hemorrhage [J]. Neuroscience, 2012, 213: 144-153. [19] Abdulrahman BA, Khweek AA, Akhter A, et al. Autophagy stimulation by rapamycin suppresses lung inflammation and infection by Burkholderia cenocepacia in a model of cystic fibrosis [J]. Autophagy, 2011, 7(11): 1359-1370. [20] Collin M, McGovern N, Haniffa M. Human dendritic cell subsets [J]. Immunology, 2013, 140(1): 22-30. [21] Hanke ML, Kielian T. Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential [J]. Clin Sci (Lond), 2011, 121(9): 367-387. [22] Marsh BJ, Williams-Karnesky RL, Stenzel-Poore MP. Toll-like receptor signaling in endogenous neuroprotection and stroke [J]. Neuroscience, 2009, 158(3): 1007-1020. [23] Lee CY, Landreth GE. The role of microglia in amyloid clearance from the AD brain [J]. J Neural Transm (Vienna), 2010, 117(8): 949-960. [24] Arroyo DS, Soria JA, Gaviglio EA, et al. Toll-like receptor 2 ligands promote microglial cell death by inducing autophagy [J]. FASEB J, 2013, 27(1): 299-312. [25] Takenouchi T, Fujita M, Sugama S, et al. The role of the P2X7 receptor signaling pathway for the release of autolysosomes in microglial cells [J]. Autophagy, 2009, 5(5): 723-724. [26] Takenouchi T, Nakai M, Iwamaru Y, et al. The activation of P2X7 receptor impairs lysosomal functions and stimulates the release of autophagolysosomes in microglial cells [J]. J Immunol, 2009, 182(4): 2051-2062. [27] Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, et al. UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis [J]. Nature, 2007, 446(7139): 1091-1095. [28] Jin R, Yu S, Song Z, et al. Phosphoinositide 3-kinase-gamma expression is upregulated in brain microglia and contributes to ischemia-induced microglial activation in acute experimental stroke [J]. Biochem Biophys Res Commun, 2010, 399(3): 458-464. [29] Shi G, Shi J, Liu K, et al. Increased miR-195 aggravates neuropathic pain by inhibiting autophagy following peripheral nerve injury [J]. Glia, 2013, 61(4): 504-512. [30] Song J, Oh Y, Lee JE. miR-Let7A modulates autophagy induction in LPS-activated microglia [J]. Exp Neurobiol, 2015, 24(2): 117-125. [31] Vousden KH. Apoptosis. p53 and PUMA: a deadly duo [J]. Science, 2005, 309(5741): 1685-1686. [32] Zhang F, Li Y, Tang Z, et al. Proliferative and survival effects of PUMA promote angiogenesis [J]. Cell Rep, 2012, 2(5): 1272-1285. |