《中国康复理论与实践》 ›› 2015, Vol. 21 ›› Issue (07): 793-798.

• 特稿 • 上一篇    下一篇

脑白质疏松患者静息态脑网络磁共振成像的研究

魏娜 1a,燕浩 2,白丽君 3,姚婧璠 1a,李越秀 1a,陈红燕 1b,张玉梅 1   

  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2015-07-25 发布日期:2015-07-25

Resting-state Network of Brain in Leukoaraiosis Patients: A Magnetic Resonance Imaging Study

WEI Na1, YAN Hao2, BAI Li-jun3, YAO Jing-fan1, LI Yue-xiu1, CHEN Hong-yan1, ZHANG Yu-mei1   

  1. 1. Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; 2. Xidian University, Xi'an, Shaanxi 710126, China; 3.Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
  • Received:1900-01-01 Revised:1900-01-01 Published:2015-07-25 Online:2015-07-25

摘要: 目的 观察脑白质疏松(LA)患者与健康人静息态脑网络的差异。方法 分别对根据临床诊断的 31例 LA患者及 27名年龄匹配的健康对照者进行静息态功能磁共振扫描,采用独立成分分析法分离静息状态专属性功能脑网络。结果 患者组及对照组中均发现与以往文献报道相同的静息网络。两者的脑激活区域基本一致,但患者组网络成分的激活程度均较对照组低,包括楔前叶、扣带回后部、颞上回、顶上回、中央前回、中央后回、岛叶、前额叶皮质等。结论 LA患者与健康人在脑静息网络激活程度上存在显著差异。

关键词: 脑白质疏松, 静息态脑网络, 默认网络, 功能磁共振成像, 独立成分分析

Abstract: Objective To explore the diversity of resting-state network of brain between the patients with leukoaraiosis and the healthy people. Methods 31 patients with leukoaraiosis (patients) and 27 healthy persons (controls) were checked with resting-state functional magnetic resonance imaging (rs-fMRI), and analyzed with the independent component analysis (ICA) to explore the resting-state functional brain network. Results The resting-state brain network was found in both the patients and the controls, which was coincident with the previous studies. The active areas were the same in both groups, and the activation was weaken in the patients than in the controls, especially in quadrate gyri, posterior cingulate cortex, superior temporal gyrus, superior parietal gyrus, anterior central gyrus, post central gyrus, insula and prefrontal cortex. Conclusion There is a significant diversity of resting-state network of brain between the patients with leukoaraiosis and healthy people in the activation of active areas.

Key words: leukoaraiosis, resting-state network, default mode network, functional magnetic resonance imaging, independent component analysis