[1] |
WANG W Z, JIANG B, SUN H X, et al. Prevalence, incidence, and mortality of stroke in China: results from a nationwide population-based survey of 480687 adults[J]. Circulation, 2017,135(8):759-771.
|
[2] |
D'AMORE C, PACIARONI M, SILVESTRELLI G, et al. Severity of acute intracerebral haemorrhage, elderly age and atrial fibrillation: independent predictors of poor outcome at three months[J]. Eur J Intern Med, 2013,24(4):310-313.
|
[3] |
SEO W K, SEOK H Y, KIM J H, et al. C-reactive protein is a predictor of early neurologic deterioration in acute ischemic stroke[J]. J Stroke Cerebrovasc Dis, 2012,21(3):181-186.
|
[4] |
KUNICKI T J, WILLIAMS S A, NUGENT D J, et al. Mean platelet volume and integrin alleles correlate with levels of inte-grins alpha (IIb) beta (3) and alpha (2) beta (1) in acute coronary syndrome patients and normal subjects[J]. Arterioscler Thromb Vasc Biol, 2012,32(1):147-152.
|
[5] |
宋祖玲, 刁莎, 严兰平, 等. 联合决策树及Logistic回归建立乳腺癌相对风险预测模型[J]. 现代预防医学, 2019,46(7):1156-1175.
|
|
SONG Z L, DIAO S, YAN L P, et al. Prediction model of relative risk for breast cancer based on decision tree and Logistic regression[J]. Moder Prev Med, 2019,46(7):1156-1175.
|
[6] |
TU J V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes[J]. J Clin Epidemiol, 1996,49(11):1225-1231.
|
[7] |
RENGANATHAN V. Overview of artificial neural network models in the biomedical domain[J]. Bratisl Lek Listy, 2019,120(7):536-540.
|
[8] |
郑广勇, 蔡剑. 多层感知器神经网络在手足口病预测模型中的应用[J]. 中国公共卫生管理, 2020,36(1):67-73.
|
|
ZHENG G Y, CAI J. Application of multi-layer perceptron neural network in the prediction model of hand-foot-mouth disease[J]. Chin J PHM, 2020,36(1):67-73.
|
[9] |
LAU K W K, MAK M K Y. Speed-dependent treadmill training is effective to improve gait and balance performance in patients with subacute stroke[J]. J Rehabil Med, 2011,43(8):709-713.
|
[10] |
王冬燕, 吕航. 神经网络方法在医学统计预测中的应用[J]. 南京中医药大学学报(社会科学版), 2017,18(1):47-52.
|
|
WANG D Y, LÜ H. Application of neural network method to medical statistics forecast[J]. J Nanjing Univ Tradi Chin Med (Soc Sci), 2017,18(1):47-52.
|
[11] |
KEIDAR D, YARON D, GOLDSTEIN E, et al. COVID-19 classification of X-ray images using deep neural networks[J]. Eur Radiol, 2021,31(12):9654-9663.
|
[12] |
CHETHAM S M, BARKERT M, STAFFORD W. Neural networks in cardiac electrophysiological signal classification[J]. Australas Phys Eng Sci Med, 2002,25(3):124-131.
|
[13] |
LING T S, WU L L, FU Y W, et al. A deep learning-based system for identifying differentiation status and delineating the margins of early gastric cancer in magnifying narrow-band imaging endoscopy[J]. Endoscopy, 2021,53(5):469-477.
|
[14] |
KNOFLACH M, MATOSEVIC B, RÜCKER M, et al. Functional recovery after ischemic stroke: a matter of age: data from the Austrian Stroke Unit Registry[J]. Neurology, 2012,78(4):279-285.
|
[15] |
KUGLER C, ALTENHONER T, LOCHNER P, et al. Hessian Stroke Data Bank Study Group ASH. Does age influence early recovery from ischemic stroke? A study from the Hessian Stroke Data Bank[J]. J Neurol, 2003,250(6):676-681.
|
[16] |
CHALOS V, VAN DER ENDE N A M, LINGSMA H F, et al. National Institutes of Health Stroke Scale: an alternative primary outcome measure for trials of acute treatment for ischemic stroke[J]. Stroke, 2020,51(1):282-290.
|
[17] |
AHMED R, ZUBERI B F, AFSAR S. Stroke scale score and early prediction of outcome after stroke[J]. J Coll Physicians Surg Pak, 2004,14(5):267-269.
|
[18] |
RAWTHER T, TABET F. Biology, pathophysiology and current therapies that affect lipoprotein(a) levels[J]. J Mol Cell Cardiol, 2019,131:1-11.
|
[19] |
GENCER B, KRONENBERG F, STROES E S, et al. Lipoprotein(a): the revenant[J]. Eur Heart J, 2017,38(20):1553-1560.
|
[20] |
ERQOU S, KAPTOGE S, PERRY P L, et al. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality[J]. JAMA, 2009,302:412-423.
|
[21] |
FORBES C A, QUEK R G, DESHPANDE S, et al. The relationship between Lp (a) and CVD outcomes: a systematic review[J]. Lipids Health Dis, 2016,15:95.
|
[22] |
ZHANG W, ZHANGX A. Prognostic value of serum lipoprotein (a) levels in patients with acute ischemic stroke[J]. Neuroreport, 2014,25(4):262-266.
|
[23] |
FARAJI F, GHASAMI K, TALAIE-ZANJANI A, et al. Prognostic factors in acute stroke, regarding to stroke severity by Canadian Neurological Stroke Scale: a hospital-based study[J]. Asian J Neurosurg, 2013,8(2):78-82.
|
[24] |
WORTHMANN H, TRYC A B, GOLDBECKER A, et al. The temporal profile of inflammatory markers and mediators in blood after acute ischemic stroke differs depending on stroke outcome[J]. Cerebrovas Dis, 2010,30(1):85-92.
|
[25] |
WANG A X, TIAN X, ZUO Y T, et al. High lactate dehydrogenase was associated withadverse outcomes in patients with acute ischemic stroke or transient ischemic attack[J]. Ann Palliat Med, 2021,10(10):10185-10195.
|