《中国康复理论与实践》 ›› 2014, Vol. 20 ›› Issue (6): 543-547.

• 论文 • 上一篇    下一篇

正常人脑静息态功能磁共振的脑功能连接

石庆丽1,燕浩2,陈红燕3a,王凯3a,姚婧璠3b,韩在柱4,张玉梅3b,张贵云1,高玉苹1   

  1. 1.北京市平谷区医院神经内科,北京市101200;2.西安电子科技大学外国语学院,陕西西安市710071;3.首都医科大学附属北京天坛医院,a.医学影像中心;b.神经内科,北京市100050;4.北京师范大学认知与学习国家重点实验室,北京市100875
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2014-06-25 发布日期:2014-06-25

Effective Connectivity of Resting-state Functional Magnetic Resonance Imaging in Normal Adults

SHI Qing-li, YAN Hao, CHEN
Hong-yan, et al.
  

  1. Department of Neurology, Beijing Pinggu Hospital, Beijing 101200, China
  • Received:1900-01-01 Revised:1900-01-01 Published:2014-06-25 Online:2014-06-25

摘要: 目的探讨正常人脑静息状态下的不同专属脑网络间的连接强度及其意义。方法选取36名健康受试者进行静息态功能磁共振(rs-fMRI)扫描,采用独立成分分析(ICA)方法分离静息状态五大专属性功能脑网络,将五大脑网络分别作为感兴趣区,并采用多变量Granger因果分析方法(GCA)分析相关脑网络之间的功能因果连接的强度关系。采用SPM5.0软件进行分析处理。结果应用ICA方法得到5个经典的正常人静息态脑网络成分,分别为默认网络(DMN)、记忆网络(MeN)、运动网络(MoN)、听觉网络(AN)和执行控制网络(ECN)。GCA分析表明,DMN和其余4个网络之间、MeN和ECN之间、AN和MoN之间、ECN和AN之间均存在显著的因果联系。结论正常人在静息状态下存在特定的脑功能连接网络,且这些网络之间有着显著的因果联系。

关键词: 静息态功能磁共振成像, 脑功能连接, 独立成分分析

Abstract: Objective To detect the effective connectivity of resting- state functional magnetic resonance imaging (fMRI) in normal adults. Methods 36 normal adults were performed resting-state fMRI scanning, and 5 brain netwokes were included as regions of interests. Independent component (ICA) was used to evaluate the effective connectivity, and multivariate Granger causality analysis (mGCA) was used to analyze the casuality between the networks. All preprocessing steps were carried out using Statistical Parametric Mapping 5.0 software. Results 5 classic resting brain networks including default mode network (DMN), memory network (MeN), motor network (MoN), auditory network (AN) and executive control network (ECN) were aquired. The mGCA presented significant casuality between DMN and other 4 networks, MeN and ECN, AN and MoN, ECN and AN. Conclusion There are specific brain effective connectivity of resting-state fMRI in normal adults, and there is significant causal link between these networks.

Key words: resting-state functional magnetic resonance imaging, brain network connection, independent component analysis